

Georgakarakou, C. E. & Economides, A.A.: Software Agent Technology: An
Overview. Agent and Web Service Technologies in Virtual Enterprises, N.

Protogeros (ed.), Idea Group Publ

Software Agent Technology: an Οverview
Application to Virtual Enterprises

Chrysanthi Ε. Georgakarakou & Anastasios A. Economides

Information Systems Department

University of Macedonia
Egnatia 156, 54006 Thessaloniki, GREECE

{georgak, economid}@uom.gr

1. Introduction

The aim of this chapter is to survey some key research issues in the software agents’ area. It annotates several
researchers’ opinions on many areas concerning software agents trying to give a more documentary point of view of
each argued subject. Its main goal is to provide an overview of the rapidly evolving area of software agents serving
as a reference point to a large body of literature and outlining the key aspects of software agent technology. While
this chapter does not act as an introduction to all the issues in the software agents’ field, it intends to point the reader
at the primary areas of interest. In addition to, this chapter investigates the application of agent technology to virtual
enterprises. It presents basic aspects of applying agent technology to virtual enterprises serving as an introductory
step.

First of all, this overview chapter attempts to answer the question of what a software agent is. Secondly, it
analyzes the three technologies that DAI (distributed artificial intelligence) has evolved: i) multi-agent system
(MAS), ii) distributed problem solving (DPS), and iii) parallel AI (PAI). Thereinafter, it makes the distinction
between single agent and multi-agent systems analyzing their dimensions. In addition to, it goes through the
broad spectrum of agent properties. Furthermore, it discusses the most acknowledged classification schemes
or taxonomies (typologies) of software agents proposed in the agent research community. Moreover, it
presents the most well-known agent architecture classification schemes arguing about each distinct
architecture. Besides, it explores the two most important agent communication approaches: i) communication
protocols, and ii) evolving languages. It also discusses about a number of languages for coordination and
communication that have been proposed. It argues about possible implementations of agent transportation
mechanisms as well. Further, it annotates prominent ontology specification languages and editors for ontology
creation and maintenance. Then, it lists and argues standard languages and several prototype languages for
implementing agent-based systems that have been proposed for constructing agent-based systems. Afterwards,
it presents a number of tools and platforms that are available and support activities or phases of the process of
agent-oriented software development. Next, it examines several agent oriented software engineering (AOSE)
methologies that have been proposed to assist engineers to create agent-based systems. At the end, it
investigates the application of the agent technology to virtual enterprises, answering the question of why to
use agents in virtual enterprises and presenting the current research activity that focuses on the agent
technology applied to virtual enterprises.

2. Background

As software agents comprise a prominent scientific area of research activity, a plethora of researchers have
investigated them and stated their own point of view. Nwana & Ndumu (1996) mention that software agent
technology is a rapidly developing area of research. According to Wooldridge & Jennings (1995), the concept of an
agent has become important in both artificial intelligence (AI) and mainstream computer science. Oliveira et al.
(1999) observe that for some time now agent-based and multi-agent systems (MASs) have attracted the interest of
researchers far beyond traditional computer science and artificial intelligence (AI).

Although software agent technology demonstrates expeditious advancement, there is a truly heterogeneous
body of work being carried out under the ‘agents’ banner (Nwana & Ndumu, 1996). Nwana & Ndumu (1996)

administrator
Πλαίσιο κειμένου
Georgakarakou, C. E. & Economides, A. A. Software agent technology: An overview. In: Software Applications: Concepts, Methodologies, Tools, and Applications, P. F. Tiako (ed.), IGI-Global ISBN: 978-1-60566-060-8

introduce software agent technology by overviewing the various agent types currently under investigation by
researchers. Nwana (1996) largely reviews software agents, and makes some strong statements that are not
necessarily widely accepted by the agent community. Nwana (1996) presents a typology of agents, next places
agents in context, defines them and overviews critically the rationales, hypotheses, goals, challenges and
state-of-the-art demonstrators of the various agent types of the proposed typology. Besides, Nwana (1996)
attempts to make explicit much of what is usually implicit in the agents’ literature and proceeds to overview
some other general issues which pertain to all the types of agents in the typology.

Agent-based and multi-agent systems (MASs) have attracted the researchers’ interest to great extents. Oliveira
et al. (1999) try to identify focal points of interest for researchers working in the area of distributed AI (DAI)
and MAS as well as application oriented researchers coming from related disciplines, e.g. electrical and
mechanical engineering. They do this by presenting key research topics in DAI and MAS research and by
identifying application domains in which the DAI and MAS technologies are most suitable.

Sycara (1998) presents some of the critical notions in MASs, the research work that has addressed them and
organizes these notions around the concept of problem-solving coherence. Sycara (1998) believes that
problem-solving coherence is one of the most critical overall characteristics that a MAS should exhibit.

Jennings et al. (1998) provide an overview of research and development activities in the field of autonomous
agents and multi-agent systems. They aim to identify key concepts and applications, and to indicate how they
relate to one-another. Some historical context to the field of agent-based computing is given, and
contemporary research directions are presented (Jennings et al., 1998). Finally, a range of open issues and
future challenges are highlighted (Jennings et al., 1998).

Wooldridge & Jennings (1995) aim to point the reader at what they perceive to be the most important
theoretical and practical issues associated with the design and construction of intelligent agents. For
convenience, they divide these issues into three areas (agent theory, agent architectures and agent languages).
Their paper is not intended to serve as a tutorial introduction to all the issues mentioned and includes a short
review of current and potential applications of agent technology.

Wooldridge (1998) provides an introductory survey of agent-based computing. The article begins with an
overview of micro-level issues in agent-based systems: issues related to the design and construction of
individual intelligent agents. The article then goes on to discuss some macro-level issues: issues related to the
design and construction of agent societies. Finally, the key application areas for agent technology are
surveyed (Wooldridge, 1998).

An article that should not be omitted at this point is Weiß’s (2002) paper. Weiß (2002) offers a guide to the
broad body of literature of agent-oriented software engineering (AOSE). The guide, which is intended to be of
value to both researchers and practitioners, is structured according to key issues and key topics that arise when
dealing with AOSE: methods and frameworks for requirements engineering, analysis, design, and
implementation; languages for programming, communication and coordination, and ontology specification;
and development tools and platforms.

On the other hand, considering the agent technology application to virtual enterprises, Jennings, Norman et al.
(1998) exhibit considerable concepts. They argue the case of the agent-based approach showing how agent
technology can improve efficiency by ensuring that business activities are better scheduled, executed,
monitored, and coordinated.

According to Camarinha-Matos (2002), multi-agent systems represent a promising approach to both model
and implement the complex supporting infrastructures required for virtual enterprises and related emerging
organizations. The current status of application of this approach to industrial virtual enterprises, virtual
communities, and remote supervision in the context of networked collaborative organizations is presented
(Camarinha-Matos, 2002). Examples of relevant projects are provided and major challenges and open issues
identified as well (Camarinha-Matos, 2002).

Petersen et al. (2001) describe how virtual enterprises can be modelled using the AGORA multi-agent
architecture, designed for modelling and supporting cooperative work among distributed entities. They
underline that the distributed and goal-oriented nature of the virtual enterprise provides a strong motivation
for the use of agents to model virtual enterprises. They also mention the main advantages of their approach.

This chapter provides an overview of research activity regarding the scientific domain of software agents. As
the field of software agents can appear chaotic, this chapter briefly introduces the key issues rather than
present an in-depth analysis and critique of the field. References to more detailed treatments are provided. The
purpose of this chapter is to make a list of the most important themes concerning software agents, apposing
some order and consistency and serve as a reference point to a large body of literature. In addition to, this
chapter makes an introduction of applying agent technology to virtual enterprises and describes current
research activity that addresses the above mentioned issue.

3. A Brief Overview of Software Agent Technology

3.1. What is a Software Agent?

Software agent technology is a rapidly developing area of research and probably the fastest growing area of
information technology (IT) (Nwana & Ndumu, 1996; Jennings & Wooldridge, 1996). Application domains
in which agent solutions are being applied or researched into include workflow management,
telecommunications network management, air-traffic control, business process reengineering, data mining,
information retrieval/management, electronic commerce, education, personal digital assistants (PDAs), e-mail
filtering, digital libraries, command and control, smart databases, and scheduling/diary management (Nwana
& Ndumu, 1996).

Over the last years, many researchers in the area of agents have proposed a large variety of definitions for the agent term.
It is stated that it is difficult to give a full definition for the note of agency. Nwana (1996) predicates there are at least two
reasons why it is so difficult to define precisely what agents are. Firstly, agent researchers do not ‘own’ this term in the
same way as fuzzy logicians/AI researchers, for example, own the term ‘fuzzy logic’ - it is one that is used widely in
everyday parlance as in travel agents, estate agents, etc. Secondly, even within the software fraternity, the word ‘agent’ is
really an umbrella term for a heterogeneous body of research and development (Nwana, 1996). Concerning the agent
definition, Nwana (1996) states that ‘When we really have to, we define an agent as referring to a component of software
and/or hardware which is capable of acting exactingly in order to accomplish tasks on behalf of its user. Given a choice,
we would rather say it is an umbrella term, meta-term or class, which covers a range of other more specific agent types,
and then go on to list and define what these other agent types are. This way, we reduce the chances of getting into the
usual prolonged philosophical and sterile arguments which usually proceed the former definition, when any old software
is conceivably recastable as agent-based software’ (p. 6).

Bradshow (1997) identifies two approaches to the definition of an agent as follows: i) agent as an ascription: this
approach is based on the concept that “agency cannot ultimately be characterized by listing a collection of attributes but
rather consists fundamentally as an attribution on the part of some person”, and ii) agent as a description: agents are
defined by describing the attributes they should exhibit.

Jennings & Wooldridge (1996) offer a relatively loose notion of an agent as a self-contained program capable of
controlling its own decision making and acting, based on its perception of its environment, in pursuit of one or more
objectives will be used here.

Wooldridge (1998) defines an intelligent agent as a system that enjoys the following four properties: autonomy (agents
operate without the direct intervention of humans or others, and have control over their actions and internal state), social
ability (agents are able to cooperate with humans or other agents in order to achieve their tasks), reactivity (agents
perceive their environment, and respond in a timely fashion to changes that occur in it), and pro-activeness (agents do not
simply act in response to their environment, they are able to exhibit goal-directed behaviour by taking the initiative).

According to Hayes (1999), an agent is an entity (either computer, or human) that is capable of carrying out goals, and is
part of a larger community of agents that have mutual influence on each other. Agents may co-exist on a single
processor, or they may be constructed from physically, but intercommunicating processors (such as a community of
robots) (Hayes, 1999). The key concepts in this definition are that agents can act autonomously to some degree, and they
are part of a community in which mutual influence occurs (Hayes, 1999).

3.2. Distributed Artificial Intelligence (DAI) Technologies

Distributed artificial intelligence (DAI) is a sub-field of artificial intelligence (AI) which is concerned with a
society of problem solvers or agents interacting in order to solve a common problem: computers and persons,
sensors, aircraft, robots, etc (Green et al., 1997). Such a society is termed a multi-agent system, namely, a

network of problem solvers that work together to solve problems that are beyond their individual capabilities
(Green et al., 1997). Software agents have evolved from multi-agent systems (MAS), which in turn form one
of three broad areas which fall under DAI, the other two being distributed problem solving (DPS) and parallel
AI (PAI) (Nwana, 1996). Therefore, agents inherit potential benefits from both DAI e.g. modularity, speed,
reliability and AI e.g. operation at knowledge level, easier maintenance, reusability, platform independence
(Nwana, 1996).

3.3. Agent Systems

Jennings et al. (1998) state that an agent-based system is a system in which the key abstraction used is that of
an agent. In principle, an agent-based system might be conceptualised in terms of agents, but implemented
without any software structures corresponding to agents at all (Jennings et al., 1998). A parallel with object-
oriented software can be drawn, where it is entirely possible to design a system in terms of objects, but to
implement it without the use of an object-oriented software environment (Jennings et al., 1998). But this
would at best be unusual, and at worst, counter-productive (Jennings et al., 1998). According to Jennings et
al. (1998), a similar situation exists with agent technology and they therefore expect an agent-based system to
be both designed and implemented in terms of agents.

An agent-based system may contain one or more agents (Jennings et al., 1998). There are cases in which a
single agent solution is appropriate (Jennings et al., 1998). However, the multi-agent case — where the
system is designed and implemented as several interacting agents — is arguably more general and more
interesting from a software engineering standpoint (Jennings et al., 1998). Multi-agent systems are ideally
suited to representing problems that have multiple problem solving methods, multiple perspectives and/or
multiple problem solving entities (Jennings et al., 1998). Such systems have the traditional advantages of
distributed and concurrent problem solving, but have the additional advantage of sophisticated patterns of
interactions (Jennings et al., 1998). Examples of common types of interactions include: cooperation (working
together towards a common aim), coordination (organising problem solving activity so that harmful
interactions are avoided or beneficial interactions are exploited), and negotiation (coming to an agreement
which is acceptable to all the parties involved) (Jennings et al., 1998).

As the technology matures and endeavors to attack more complex, realistic, and large-scale problems, the
need for systems that consist of multiple agents that communicate in a peer-to-peer fashion is becoming
apparent (Sycara, 1998). The most powerful tools for handling complexity are modularity and abstraction
(Sycara, 1998). Multi-agent systems (MASs) offer modularity (Sycara, 1998). If a problem domain is
particularly a complex, large, or unpredictable, then the only way it can reasonably be addressed is to develop
a number of functionally specific and (nearly) modular components (agents) that are specialized at solving a
particular problem aspect (Sycara, 1998). In MASs, applications are designed and developed in terms of
autonomous software entities (agents) that can flexibly achieve their objectives by interacting with one
another in terms of high-level protocols and languages (Zambonelli et al., 2003). A MAS can be defined as a
collection of, possibly heterogeneous, computational entities, having their own problem solving capabilities
and which are able to interact among them in order to reach an overall goal (Oliveira et al., 1999).

3.4. Agent Properties

A software agent is a computer system situated in an environment that acts on behalf of its user and is
characterised by a number of properties (Chira, 2003). Most researchers agree that autonomy is a crucial
property of an agent. Alonso (2002) states about agents that it is precisely their autonomy that defines them.
Furthermore, cooperation among different software agents may be very useful in achieving the objectives an
agent has (Chira, 2003). According to the weak notion of agency given by Wooldridge & Jennings (1995) the
most general way in which the term agent is used is to denote hardware or (more usually) software-based
computer system that enjoys the following properties: autonomy, social ability, reactivity and pro-activeness
(Wooldridge & Jennings, 1995). Jennings et al. (1998) identify three key concepts in their definition that they
adapt from (Wooldridge & Jennings, 1995): situatedness, autonomy, and flexibility (by the term flexible they
mean that the system is responsive, pro-active and social). For Wooldridge (1998), an intelligent agent is a
system that enjoys autonomy, social ability, reactivity and pro-activeness. He also refers to the fact that other
researchers argue that different properties, such as mobility, veracity, benevolence, rationality and learning,
should receive greater emphasis.

An agent may possess many properties in various combinations. Table 1 enumerates and defines all the
properties that we adopt for the purposes of this research.

Property Definition

1. Autonomy Ιt means that the agent can act without direct intervention by humans or other
agents and that it has control over its own actions and internal state (Sycara,
1998).

2. Reactivity or
situatedness or
sensing and acting

Ιt means that the agent receives some form of sensory input from its
environment, and it performs some action that changes its environment in
some way (Chira, 2003; Sycara, 1998).

3. Proactiveness or
goal directed
behaviour

Ιt means that the agent does not simply act in response to its environment; it is
able to exhibit goal-directed behaviour by taking the initiative (Chira, 2003;
Wooldridge & Jennings, 1995; Odell, 2000).

4. Social ability Ιt means that the agent interacts and this interaction is marked by friendliness
or pleasant social relations; that is, the agent is affable, companionable or
friendly (Odell, 2000).

5. Coordination Ιt means that the agent is able to perform some activity in a shared
environment with other agents (Odell, 2000). Activities are often coordinated
via plans, workflows, or some other process management mechanism (Odell,
2000).

6. Cooperation
or collaboration

Ιt means that the agent is able to coordinate with other agents to achieve a
common purpose; non-antagonistic agents that succeed or fail together (Odell,
2000).

7. Flexibility Ιt means that the system is responsive (the agents should perceive their
environment and respond in a timely fashion to changes that occur in it), pro-
active and social (Jennings et al., 1998).

8. Learning or
adaptivity

Ιt means that an agent is capable of i) reacting flexibly to changes in its
environment; ii) taking goal-directed initiative, when appropriate; and iii)
learning from its own experience, its environment, and interactions with
others (Chira, 2003; Sycara, 1998).

9. Mobility Ιt means that the agent is able to transport itself from one machine to another
and across different system architectures and platforms (Etzioni & Weld,
1995).

10. Temporal
continuity

Ιt means that the agent is a continuously running process, not a "one-shot"
computation that maps a single input to a single output, then terminates
(Etzioni & Weld, 1995).

11. Personality
or character

An agent has a well-defined, believable "personality" and emotional state
(Etzioni & Weld, 1995).

12. Reusability Processes or subsequent instances can require keeping instances of the class
‘agent’ for an information handover or to check and to analyze them
according to their results (Horn et al., 1999).

13. Resource
limitation

An agent can only act as long as it has resources at its disposal (Horn et al.,
1999). These resources are changed by its acting and possibly also by
delegating (Horn et al., 1999).

14. Veracity It is the assumption that an agent will not knowingly communicate false
information (Wooldridge & Jennings, 1995; Wooldridge 1998).

15. Benevolence It is the assumption that agents do not have conflicting goals and that every
agent will therefore always try to do what is asked of it (Wooldridge &
Jennings, 1995; Wooldridge 1998).

16. Rationality It is the assumption that an agent will act in order to achieve its goals, and will
not act in such a way as to prevent its goals being achieved — at least insofar
as its beliefs permit (Wooldridge & Jennings, 1995; Wooldridge 1998).

17. Inferential
capability

An agent can act on abstract task specification using prior knowledge of
general goals and preferred methods to achieve flexibility; goes beyond the
information given, and may have explicit models of self, user, situation,
and/or other agents (Bradshow, 1997).

18. “Knowledge-
level” communication
ability

The ability to communicate with persons and other agents with language more
resembling humanlike “speech acts” than typical symbol-level program-to-
program protocols (Bradshow, 1997).

19. Prediction
ability

An agent is predictive if its model of how the world works is sufficiently
accurate to allow it to correctly predict how it can achieve the task (Goodwin,

 1993).
20. Interpretation
ability

An agent is interpretive if can correctly interpret its sensor readings
(Goodwin, 1993).

21. Sound An agent is sound if it is predictive, interpretive and rational (Goodwin,
1993).

22. Proxy ability An agent can act on behalf of someone or something that is, acting in the
interest of, as a representative of, or for the benefit of, some entity (Odell,
2000).

23. Intelligence The agent’s state is formalized by knowledge and interacts with other agents
using symbolic language (Odell, 2000).

24.
Unpredictability

An agent is able to act in ways that are not fully predictable, even if all the
initial conditions are known (Odell, 2000). It is capable of nondeterministic
behaviour (Odell, 2000).

25. Credibility An agent has a believable personality and emotional state (Odell, 2000).
26. Transparency
and accountability

An agent must be transparent when required, but must provide a log of its
activities upon demand (Odell, 2000).

27.
Competitiveness

An agent is able to coordinate with other agents except that the success of one
agent implies the failure of others (Odell, 2000).

28. Ruggedization An agent is able to deal with errors and incomplete data robustly (Odell,
2000).

29.
Trustworthiness

An agent adheres to laws of robotics and is truthful (Odell, 2000).

Table 1: Agent properties

3.5. Agent Typology

Agents may be usefully classified according to the subset of these properties that they enjoy (Franklin &
Graesser, 1996). There are, of course, other possible classifying schemes (Franklin & Graesser, 1996). For
example, software agents might be classified according to the tasks they perform, for example, information
gathering agents or email filtering agents (Franklin & Graesser, 1996). Or, they might be classified according
to their control architecture (Franklin & Graesser, 1996). Agents may also be classified by the range and
sensitivity of their senses, or by the range and effectiveness of their actions, or by how much internal state
they possess (Franklin & Graesser, 1996).

There are several classification schemes or taxonomies proposed in the agent research community from which
the following three are well acknowledged (Chira, 2003):
i) Gilbert’s scope of intelligent agents (Bradshow, 1997).
ii) Nwana’s primary attributes dimension typology (Nwana, 1996).
iii) Franklin and Graesser’s agent taxonomy (Franklin & Graesser, 1996).

A typology refers to the study of types of entities and there are several dimensions to classify existing
software agents (Nwana, 1996). Agents may be classified according to (Bradshow, 1997):
 i) Mobility, as static or mobile,
 ii) Presence of a symbolic reasoning model, as deliberative or reactive,
iii) Exhibition of ideal and primary attributes, such as autonomy, cooperation, and learning,
iv) Roles, as information or Internet,
v) Hybrid philosophies, which combine two or more approaches in a single agent, and
vi) Secondary attributes, such as versatility, benevolence, veracity, trustworthiness, temporal continuity,
ability to fail gracefully, and mentalistic and emotional qualities (Nwana, 1996).

Nwana (1996) identifies seven types of agents (Chira, 2003). Table 2 enumerates and describes each agent
type.

Agent type Description
1. Collaborative agents They are “able to act rationally and autonomously in open and time-constrained

multi-agent environments” (Chira, 2003; Nwana, 1996). Key characteristics:
autonomy, social ability, responsiveness, and pro-activeness (Chira, 2003;
Nwana, 1996).

2. Interface agents They support and assist the user when interacting with one or more computer

applications by learning during the collaboration process with the user and with
other software agents (Chira, 2003; Nwana, 1996). Key characteristics:
autonomy, learning (mainly from the user but also from other agents), and
cooperation with the user and/or other agents (Chira, 2003; Nwana, 1996).

3. Mobile agents They are autonomous software programs capable of roaming wide area networks
(such as WWW) and cooperation while performing duties (e.g. flight reservation,
managing a telecommunications’ network) on behalf of its user (Chira, 2003;
Nwana, 1996). Key characteristics: mobility, autonomy, and cooperation (with
other agents – for example, to exchange data or information) (Chira, 2003;
Nwana, 1996).

4. Information/internet
agents

They are designed to manage, manipulate or collate the vast amount of
information available from many distributed sources (information explosion)
(Chira, 2003; Nwana, 1996). These agents “have varying characteristics: they
may be static or mobile; they may be non-cooperative or social; and they may or
may not learn” (Chira, 2003; Nwana, 1996).

5. Reactive agents They act/respond to the current state of their environment based on a stimulus-
response scheme (Chira, 2003; Nwana, 1996). These agents are relatively simple
and interact with other agents in basic ways but they have the potential to form
more robust and fault tolerant agent-based systems (Chira, 2003; Nwana, 1996).
Key characteristics: autonomy and reactivity (Chira, 2003; Nwana, 1996).

6. Hybrid agents They combine two or more agent philosophies into a single agent in order to
maximise the strengths and minimise the deficiencies of the most relevant
techniques (for a particular purpose) (Chira, 2003; Nwana, 1996).

7. Smart Agents They are equally characterised by autonomy, cooperation, and learning (Chira,
2003; Nwana, 1996).

Table 2: Agent types

According to Nwana (1996), there are some applications which combine agents from two or more of the
above types. Nwana (1996) refers to these as heterogeneous agent systems. This category of agent systems is
generally referred to (by most researchers) as multi-agent systems (Chira, 2003).

3.6. Agent Architectures

Researchers working in the area of agents’ architectures are concerned with the design and construction of
agents that enjoy the properties of autonomy, reactivity, pro-activeness, and social ability (Wooldridge, 1998).
Wooldridge (1999) states that agent architecture is essentially a map of the internals of an agent — its data
structures, the operations that may be performed on these data structures, and the control flow between these
data structures. Three classes of agent architectures can be identified (Wooldridge & Jennings, 1995):
i) Deliberative or symbolic architectures are those designed along the lines proposed by traditional, symbolic
AI,
ii) Reactive architectures are those that eschew central symbolic representations of the agent’s environment,
and do not rely on symbolic reasoning, and
iii) Hybrid architectures are those that try to marry the deliberative and reactive approaches (Wooldridge,
1998).
 Wooldridge & Jennings (1995) indicate that agent architectures can be viewed as software engineering
models of agents and identify the above mentioned classes of agent architectures.

Wooldridge (1999) considers four classes of agents. Table 3 enumerates and gives a short description of each
class. In our opinion most agents follow one of the above four architectural classes.

Agent class Description
1. Logic based agents In which decision making is realised through logical deduction

(Wooldridge, 1999).
2. Reactive agents In which decision making is implemented in some form of direct mapping

from situation to action (Wooldridge, 1999).
3. Belief-desire-
intention (BDI) agents

In which decision making depends upon the manipulation of data structures
representing the beliefs, desires, and intentions of the agent (Wooldridge,
1999).

4. Layered architectures In which decision making is realised via various software layers, each of

which is more-or-less explicitly reasoning about the environment at
different levels of abstraction (Wooldridge, 1999).

Table 3: Agent classes

3.7. Agent Communication Approaches

One of the most important features of an agent is interaction. In other words, agents recurrently interact to
share information and to perform tasks to achieve their goals (Kostakos & Taraschi, 2001). Without
communication, different agents cannot know from each other who is doing what and how they can cooperate
(Bussink, 2004). Therefore communication is a must if we want to set up a useful multi-agent system
(Bussink, 2004).

There are several approaches to how this communication can take shape (Bussink, 2004). The two most
important approaches are communication using communication protocols and communication using an
evolving language (Bussink, 2004). Both techniques have their advantages and disadvantages (Bussink,
2004). In industrial applications communication protocols will be the best practice, but in systems where
homogeneous agents can work together language evolution is a good option (Bussink, 2004). The basis for
language evolution is in human communication (Bussink, 2004). The agent languages consist of grammars
and vocabularies, just like any human language (Bussink, 2004). Some researchers even do research in the
area of language evolution using agents in order to get more understanding of how human communication has
evolved (Bussink, 2004). For a long time, the only way agents communicated was using communication
protocols (Bussink, 2004). Therefore research often focussed on this area and a lot of specifications have been
written (Bussink, 2004). Because of the formal nature of protocols, there are a quite a few widely known and
used standards (Bussink, 2004).

3.8. Agent Communication Languages (ACLs)

The difficulty to precisely handle coordination and communication increases with the size of the agent-based
software to be developed. A number of languages for coordination and communication have been proposed.
Weίβ (2002) enumerates a list of such languages. Table 4 enumerates and describes the most prominent
examples of agent communication languages (ACLs) according to Weίβ (2002).

Agent communication language Description
1. KQML (“Knowledge Query and
Manipulation Language”)

It is perhaps the most widely used agent communication language
(Weίβ, 2002).

2. ARCOL (“ARTIMIS
COmmunication Language”)

It is the communication language used in the ARTIMIS system
(Weίβ, 2002). ARCOL has a smaller set of communication
primitives than KQML, but these can be composed (Weίβ, 2002).

3. FIPA-ACL (“FIPA Agent
Communication Language”)

It is an agent communication language that is largely inuenced by
ARCOL (Weίβ, 2002). Together FIPA-ACL, ARCOL, and KQML
establish a quasi standard for agent communication languages
(Weίβ, 2002).

4. KIF (“Knowledge Interchange
Format”)

It is a logic-based language that has been designed to express any
kind of knowledge and meta-knowledge (Weίβ, 2002). KIF is a
language for content communication, whereas languages like
KQML, ARCOL, and FIPA-ACL are for intention communication
(Weίβ, 2002).

5. COOL (“Domain independent
COOrdination Language”)

It aims at explicitly representing and applying coordination
knowledge for multi-agent systems and focuses on rule-based
conversation management (Weίβ, 2002). Languages like COOL can
be thought of as supporting a coordination/communication (or
“protocol-sensitive”) layer above intention communication (Weίβ,
2002).

Table 4: Most prominent agent communication languages

Apart from these most prominent languages, several others showing unique properties have been proposed
(Weίβ, 2002). Table 5 enumerates some of the above mentioned languages.

Agent communication language

1. ICL (“Interagent Communication Language”) (Weίβ, 2002)
2. AgentTalk (Weίβ, 2002)
3. CoLa (“Communication and coordination Language”) (Weίβ, 2002)
4. TuCSoN (“Tuple Centres Spread over Networks”) (Weίβ, 2002)
5. LuCe (Weίβ, 2002)
6. STL++ (“Simple Thread Language ++”) (Weίβ, 2002)
7. SDML (“Strictly Declarative Modelling Language”) (Weίβ, 2002)

Table 5: Agent communication languages showing unique properties

3.9. Agent Transportation Mechanisms

In agent environments, messages should be schedulable, as well as event driven (OMG Agent Working
Group, 2000). They can be sent in synchronous or asynchronous modes (OMG Agent Working Group, 2000).
The transportation mechanism should support unique addressing as well as role-based addresses (OMG Agent
Working Group, 2000). Lastly, the transportation mechanism must support unicast, multicast, and broadcast
modes and such services as broadcast behaviour, non-repudiation of messages, and logging (OMG Agent
Working Group, 2000). Table 6 enumerates and describes possible implementations of the agent
transportation mechanism.

Implementation of agent
transportation mechanism

Description

1. CORBA (“Common
Object Request Broker
Architecture”)

It is the acronym for Common Object Request Broker Architecture,
OMG's open, vendor-independent architecture and infrastructure that
computer applications use to work together over networks (URL1). Using
the standard protocol IIOP, a CORBA-based program from any vendor, on
almost any computer, operating system, programming language, and
network, can interoperate with a CORBA-based program from the same or
another vendor, on almost any other computer, operating system,
programming language, and network (URL1).

2. OMG (“ Object
Management Group”)
Messaging Services

OMG is an international trade association incorporated as a non-profit in
the United States (URL2). The OMG is currently specifying a new
messaging service (URL3).

3. JAVA Messaging
Service

It is the standard API for sending and receiving messages (URL4).

4. RMI (“Remote Method
Invocation”)

It defines and supports a distributed object model for the Java language
hiding the ORB from the programmer and providing an API for the
development of distributed applications (Bracho et al., 1999). Java Remote
Method Invocation (Java RMI) enables the programmer to create
distributed Java technology-based to Java technology-based applications,
in which the methods of remote Java objects can be invoked from other
Java virtual machines, possibly on different hosts (URL5).

5. DCOM (“Distributed
Component Object
Model”)

Microsoft® Distributed COM (DCOM) extends the Component Object
Model (COM) to support communication among objects on different
computers—on a LAN, a WAN, or even the Internet (URL6). With
DCOM, your application can be distributed at locations that make the most
sense to your customer and to the application (URL6).

6. Enterprise Java Beans
Events

The newest Java component model is Enterprise Java Beans (URL7).
Besides its name, the Java language and the idea of component based
software re-use; it has little or no similarities with the Java Beans standard
(URL7). Enterprise Java Beans are located on the server and they support
a distributed programming model that could be described as a flexible,
two-way, object-oriented version of traditional client-server programming
(URL7).

Table 6: Implementations of agent transportation mechanism

3.10. Ontology Languages and Editors

Besides an ACL, a common understanding of the concepts used among agents is necessary for a meaningful
agent communication. A common ontology is required for representing the knowledge from various domains

of discourse (OMG Agent Working Group, 2000). The ACL remains just syntax without a shared common
ontology containing the terms used in agent communication and the knowledge associated with them (Nwana
& Wooldridge, 1996). Table 7 enumerates and describes the most elaborated examples of such languages
according to Weίβ (2002).

Ontology languages Description
1. Ontolingua and Frame
Logic

They are frame-based languages (Weίβ, 2002). Both of them extend first-
order predicate logics (Weίβ, 2002). The key modelling primitive of these
languages are frames as known from artificial intelligence (Weίβ, 2002).

2. CLASSIC and LOOM They are description logics that allow an intentional definition of concepts
(Weίβ, 2002).

3. CycL It extends first-order predicate logic and was developed to enable the
specification of large common-sense ontologies (Weίβ, 2002).

Table 7: Most elaborated examples of ontology languages

Table 8 enumerates and describes the most prominent ontology specification languages that are conform to
syntactic and semantic Web standards according to Weίβ (2002).

Ontology languages Description
1. SHOE (“Simple HTML
Ontology Extension”)

It is a language that slightly extends HTML and enables a hierarchical
classification of HTML documents and the specification of relationships
among them (Weίβ, 2002).

2. XOL (“Ontology
Exchange Language”)

It is an XML- and frame-based language for the exchange of ontologies
(Weίβ, 2002).

3. OIL (“Ontology Inference
Layer”)

It aims at unifying formal semantics as offered by description logics, rich
modelling primitives as offered by frame-based languages, and the XML
and RDF web standards (Weίβ, 2002). OIL can be seen as an extension of
XOL offering both an XML-based and an RDF-based syntax (Weίβ,
2002).

4. DAML-ONT and
DAML-OIL

They are the DAML (DARPA Agent Markup Language) languages (Weίβ,
2002). DAML-OIL, which replaces DAML-ONT and represents the state
of the art in the field, has well defined model-theoretic and axiomatic
semantics (Weίβ, 2002).

Table 8: Ontology languages that are conform to syntactic and semantic Web standards

Table 9 enumerates and describes three good examples of editors for ontology creation and maintenance
according to Weίβ (2002).

Editor Description
1. Protégé It supports single-user ontology acquisition (Weίβ, 2002).
2. Webonto It supports multiple-user ontology acquisition over the Web (Weίβ, 2002).
3. OntoEdit It supports multilingual development of ontologies and multiple inheritance (Weίβ,

2002).
Table 9: Editors for ontology creation and maintenance

3.11. Languages for constructing Agent-based systems

Most agent systems are probably written in Java and C/C++ (Weίβ, 2002). Apart from these standard
languages, several prototype languages for implementing agent-based systems have been proposed that all
aim at enabling a programmer to better realize agent-specific conceptions (Weiß, 2002). Three paradigms for
implementing agent systems have been proposed: agent-oriented programming, market-oriented programming
and interaction-oriented programming (Weiß, 2002). Weίβ (2002) lists some of most prominent and best
understood prototype languages following the agent oriented paradigm (references to these languages are
provided in (Weiß, 2002). Table 10 enumerates and describes the above mentioned prototype languages.

Constructing agent-based
systems’ languages

Description

1. AGENT-0, PLACA and
AGENT-K

AGENT-0 realizes the basic ideas of the agent-oriented programming
paradigm as formulated by Shoham (Weίβ, 2002). A language that

extends AGENT-0 toward planning is PLACA, and a language that aims
at integrating AGENT-0 and KQML is AGENT-K (Weίβ, 2002).

2. Concurrent MetateM It allows specifying the intended behaviour of an agent based on
temporal logics (Weίβ, 2002).

3. AgentSpeak(L) It is a rule-based language that has a formal operational semantics and
that assumes agents to consist of intentions, beliefs, recorded events, and
plan rules (Weίβ, 2002). AgentSpeak(L) is based on an abstraction of the
PRS architecture (Weίβ, 2002).

4. 3APL It incorporates features from imperative and logic programming (Weίβ,
2002). 3APL has a well defined operational semantics and supports
monitoring and revising of agent goals (Weίβ, 2002).

5. ConGolog It is a concurrent logic-based language initially designed for high-level
robot programming (Weίβ, 2002).

6. April (“Agent PRocess
Interaction Language”),
MAIL/MAI2L (“Multiagent
Interaction and
ImplementationLanguage”),
and VIVA

Other examples of languages following the agent-oriented programming
paradigm (Weίβ, 2002).

Table 10: Constructing agent-based systems’ languages
 following the agent oriented paradigm

Nwana & Wooldridge (1996) classify constructing agent application languages according to a typology. Table
11 depicts the above mentioned classification (Nwana & Wooldridge, 1996).

Constructing agent
application languages

Typology Description

1. Actors Collaborative agents Actor language
2. Agent-0 and Placa Collaborative agents Agent-oriented programming languages
3. TCL/Tk, Safe-TCL,
Safe-Tk, Java, Telescript,
Active web tools, Python,
Obliq, April and Scheme-
48

Interface, Information and
mobile agents

Scripting languages

4. RTA/ABLE Reactive agents Reactive language
Table 11: Typology classification of constructing agent application languages

However traditional languages are still used to construct agent applications (Nwana & Wooldridge, 1996). It
is possible to implement agent-based systems in languages like Pascal, C, Lisp, or Prolog (Nwana &
Wooldridge, 1996). But as a rule, one would not choose to do so because such languages are not particularly
well-suited to the job (Nwana & Wooldridge, 1996). Typically, object-oriented languages such as Smalltalk,
Java, or C++ lend themselves more easily for the construction of agent systems (Nwana & Wooldridge, 1996).
This is because the concept of an “agent” is not too distant from that of an “object”: agents share some
properties with objects such as encapsulation, and frequently, inheritance and message passing (Nwana &
Wooldridge, 1996). However, agents differ distinctly from objects vis-à-vis polymorphism (Nwana &
Wooldridge, 1996).

3.12. Tools and Platforms

A number of tools and platforms are available that support activities or phases of the process of agent-oriented
software development (Weiβ, 2002). Most of them are built on top of and integrated with Java (Weiβ, 2002).
While almost all available tools and platforms have their focus on implementation support, some of them do
also support analysis, design, and test/debugging activities (Weiβ, 2002).

Weίβ (2002) makes a list of such tools and platforms separating them into often sited academic and research
prototypes and into commercial products for development support. Table 12 depicts the above mentioned
classification. References to the following tools and a brief description as well can be found in (Weiβ, 2002).

Tools and platforms Focusing area of interest

1. ZEUS, JADE (“Java Agent DEvelopment framework”),
LEAP (“Lightweight Extensible Agent Platform”), agenTool,
RETSINA, JATLite (“Java Agent Template, Lite”), FIPA-OS,
MADKIT, SIM_AGENT, JAFMAS (“Java-based Agent
Framework for Multi-Agent Systems”), ABS (“Agent Building
Shell”), OAA (“Open Agent Architecture”), and Agentis

Academic and research activity

2. AgentBuilder, JACK, Intelligent Agent Factory and
Grasshopper

Commercial activity

Table 12: Classification of tools and platforms supporting activities or phases of the
 process of agent-oriented software development

Serenko & Detlor (2002) state about the term agent toolkit that each vendor uses its own explanation of the
term and for the needs of their report define an agent toolkit as any software package, application or
development environment that provides agent builders with a sufficient level of abstraction to allow them to
implement intelligent agents with desired attributes, features and rules. Some toolkits may offer only a
platform for agent development, whereas others may provide features for visual programming (Serenko &
Detlor, 2002). Serenko & Detlor (2002) categorize the available agent toolkits on the market into four major
categories. Table 13 depicts the four categories and the representative toolkits of each category (Serenko &
Detlor, 2002).

Agent toolkits Category
1. Concordia, Gossip, FarGo, and IBM Aglets Mobile agent toolkits
2. MadKit, Zeus, JADE, JATLite, and MAST Multi-agent toolkits
3. FIPA-OS and Ascape General purpose toolkits
4. Microsoft Agent, Voyager and NetStepper Internet agent toolkits

Table 13: Categorization of agent toolkits according to their focusing area

3.13. Agent-Oriented Software Engineering (AOSE) Methodologies

Agent researchers have produced methodologies to assist engineers to create agent-based systems (URL8).
Some researchers have taken agent theory as their starting point and have produced methodologies that are
rooted in that theory (URL8). Other researchers have taken object techniques as their point of departure and
have enriched them to be suitable for agents (URL8). Others have taken knowledge engineering concepts and
extended them (URL8). Researchers also have tried to assemble methodologies by combining features from
different methodologies (URL8). Yet other researchers have produced methodologies based on both agent and
object technologies (URL8).

Methologies having as background the agent and multi-agent technology are characterized by a clear focus on
capturing social-level abstractions such as agent, group, or organization, that is, on abstractions that are above
the conventional object level (Weiβ, 2002). Methologies having as background the object orientation are
characterized by the attempt to appropriately extend existing object-oriented techniques such that they also
capture the notion of agency (Weiβ, 2002). Methologies having as background Knowledge engineering are
characterized by an emphasis on the identification, acquisition and modelling of knowledge to be used by the
agent components of a software system (Weiβ, 2002). Table 14 depicts the most popular approaches of each
disciplinary background (Weiβ, 2002).

Agent-oriented
software engineering

methology

Disciplinary
background

on which the different
approaches are based

Description

1. Gaia (“Generic
Architecture for
Information
Availability”)

Agent and multi-agent
technology

This is a method that distinguishes between analysis
and design and associates different models with these
two phases (Weiβ, 2002). Gaia focuses on
organizational aspects in terms of concepts such as
roles, interactions, and acquaintances (Weiβ, 2002).

2. SODA (“Societies in
Open and Distributed
Agent spaces”)

Agent and multi-agent
technology

This is another good example of an analysis and
design method that concentrates on the social (inter-
agent) aspects of agent systems and that employs the
concept of coordination models (Weiβ, 2002).

3. Cassiopeia Agent and multi-agent
technology

This is a design method that distinguishes three levels
of behaviour - elementary, relational, and
organizational - and aims at capturing both structural
and dynamic aspects of the target system (Weiβ,
2002).

4. Aalaadin Agent and multi-agent
technology

This is a general analysis and design framework that
has its focus on the organizational level of multi-agent
systems and is built on the three core concepts of
agents, groups, and roles (Weiβ, 2002).

5. KGR Object-oriented
technology

This is a design and specification method for a
particular class of agents, namely, BDI agents (Weiβ,
2002).

6. MaSE (“Multiagent
Systems Engineering”)

Object-oriented
technology

This method covers design and initial implementation
through two languages called AgML (“Agent
Modeling Language") and AgDL (“Agent Definition
Language”) and builds upon OMT and UML (Weiβ,
2002).

7. MASSIVE
 (“MultiAgent
SystemS Iterative
View Engineering”)

Object-oriented
technology

This method covers analysis, design and code
generation, and combines standard software
engineering techniques such as multi-view modelling,
round-trip engineering, and iterative enhancement
(Weiβ, 2002).

8. AOAD (“Agent-
Oriented Analysis
and Design”)

Object-oriented
technology

This analysis and design method proposes the use of
extended class responsibility cards (CRCs) and the use
of both the Object Modelling Technique (OMT) and
the Responsibility Driven Design (RDD) method
known from object-oriented development (Weiβ,
2002).

9. MASB (“Multi-
Agent Scenario-
Based”).

Object-oriented
technology

MASB is an analysis and design method that covers
issues of both objects and agents via behaviour
diagrams, data models, transition diagrams, and
object life cycles (Weiβ, 2002).

10. CoMoMAS
(“Conceptual
Modelling of
Multi-Agent
Systems”)

Knowledge engineering
technology

This is an elaborated extension of the CommonKADS
methodology, supporting analysis, design, and
automated code generation (Weiβ, 2002).

11. MAS-
CommonKADS
(“Multi-Agent System
CommonKADS”)

Knowledge engineering
technology

This is another extension of CommonKADS that
supports analysis and design of agent-oriented systems
(Weiβ, 2002).

Table 14: Categorization of AOSE methologies according to their
 focusing disciplinary background

Other agent-oriented software engineering methologies (AOSE) are Tropos, Agent-Oriented Analysis and
Design, Agent Modelling Technique for Systems of BDI agents, Agent Oriented Methodology for Enterprise
Modelling, PASSI (a Process for Agent Societies Specification and Implementation), Prometheus , AOR,
ROADMAP, OPM /MAS, Ingenias, DESIRE, AAII methodology, Cooperative Information Agents design,
Adept, AUML, ADELFE, MESSAGE /UML, The Styx Agent Methology, SABPO, EXPAND (“Expectation-
oriented analysis and design”) and ODAC (URL8; Iglesias et al., 1999; Cernuzzi et al., 2004; Wooldridge &
Ciancarini, 2000;URL9; Weiβ, 2002).

4. Agents in Virtual Enterprises (VE)

4.1 What is a Virtual Enterprise?

The term, and the concept, “Virtual Enterprise” emerged already in the beginning of nineties and could be
seen as the further optimization and perfection of the basic ideas about dynamic networking (Putnik, 2004).
Although the virtual enterprise research represents a growing and multidisciplinary area it still lacks a precise
definition of the concepts and an agreement on the used terminology (Camarinha-Matos, 2002). So far, there
is no unified definition for this paradigm and a number of terms are even competing in the literature while
referring to different aspects and scopes of virtual enterprises (Camarinha-Matos, 2002). Akin concepts are
supported by Gijsen et al. (2002), Freitas Mundim et al. (2000), Putnik (2004), and Petersen et al. (2001).

The definitions range from the virtual enterprise as a simple subcontracting network to the virtual enterprise
as a dynamic network, in which the partners share that share resources, risks and even markets, and which
operates in a virtual environment or with virtual agents (Putnik, 2004). According to Do et al. (2000) a virtual
enterprise is a form of cooperation of independent market players (enterprises, freelancers, authorities etc.)
which combine their core competencies in order to manufacture a product or to provide a service. Marík &
McFarlane (2005) conclude that a virtual enterprise represents a cluster of organizations collaborating to
achieve one or more goals. Katzy & Schuh (1999) define that the virtual enterprise is based on the ability to
create temporary co-operations and to realize the value of a short business opportunity that the partners cannot
(or can, but only to lesser extent) capture on their own. Other attempts at defining virtual enterprises are listed
in (Petersen et al., 2001).

In our opinion, an interesting definition that we adopt is the following: ‘a goal-oriented constellation of
(semi)autonomous distributed entities. Each entity, which can be an organization and/or an individual,
attempts to maximize its own profits as well as contribute to defining and achieving the overall goals of the
virtual enterprise. Virtual enterprises are not rigid organizational structures within rigid frameworks, but
rather (heterogeneous) ensembles, continuously evolving over time’ (p. 2) (Petersen et al., 2001).

4.2 Why to use Agents in Virtual Enterprises?

Marík & McFarlane (2005) state that a virtual enterprise might address problems ranging from simple
membership to distributed inventory management and synchronization of supply, production, and distribution
schedules. They also support that these problems are inherently distributed, with each organization willing to
share only limited information and having its own business goals in conjunction with the overall goal. All the
above statements orientate to an agent technology solution.

According to Jennings et al. (1998), considering a virtual enterprise, the domain involves an inherent
distribution of data, problem solving capabilities, and responsibilities. In addition, the integrity of the existing
organizational structure and the autonomy of its sub-parts needs to be maintained (Jennings et al., 1998).
Moreover, interactions are fairly sophisticated, including negotiation, information sharing, and coordination
(Jennings et al., 1998). Besides, the problem solution cannot be entirely prescribed (Jennings et al., 1998).
According to Jennings et al. (1998), all the above observations motivate the choice of agents as a technology
solution as well.

According to Fox & Gruninger (1998), the entrepreneurial and virtual nature of the agile enterprise coupled
with the need for people and information to have a strategic impact entails a greater degree of communication,
coordination and cooperation within and among enterprises. In other words, the agile organisation must be
integrated (meaning by the term integrated the structural, behavioural and information integration of the
enterprise) (Fox & Gruninger, 1998). Petersen et al. (2001) support that cooperation is required both to
perform work and to adapt the constellation to the varying needs of the environment. They state that goal-
oriented and distributed nature of virtual enterprises implies that there is no central control; rather, the control
is decentralized. According to their opinion, the distributed and goal-oriented nature of the virtual enterprise
provides a strong motivation for the use of agents to model virtual enterprises.

The following parallelism demonstrates remarkable interest. According to Rahwan et al. (2001) the virtual
enterprise creation could be viewed as a Cooperative System design problem. A Cooperative System is a
system in which a set of autonomous agents (computational and human) interact with each other through
sharing their information, decision making capabilities and other resources, and distributing the corresponding
workload among themselves, in order to achieve common and complementary goals (Camarinha-Matos &
Afsarmanesh, 1998). The above parallelism motivates as well the agents as a technology solution.

The nature of agents, by definition, enables decentralized control of the enterprise, which is desirable in a
dynamic and flexible environment, and the behaviour of the complete enterprise emerges as a result of the
behaviours of the individual agents (Petersen et al., 2001).

Another strong point in favour of the adoption of agents is their versatility (Petersen et al., 2001). They can
play two main roles (Petersen et al., 2001). First, they provide a flexible means of modelling the virtual
enterprise in terms of cooperative work among the agents (Petersen et al., 2001). Second, they can be used to
provide active support to the members of the virtual enterprise (Petersen et al., 2001). Thus, agents being
computational entities, the resulting model provides an easy and efficient passage to the computational
support that is required by virtual enterprises (Petersen et al., 2001).

According to Marík & McFarlane (2005), MASs and relevant technologies consider each company as an
agent able to carry out specific (usually quite complex) functions. The agents are registered with a certain
platform and communicate in a standard agent communication language (Marík & McFarlane, 2005). Virtual
enterprise formation, as well as the joint planning and scheduling activities, is based on jointly known
negotiation rules and scenarios (Marík & McFarlane, 2005). These are very similar (or identical) to protocols
or auctions in the MAS domain (Marík & McFarlane, 2005). The highly specialized members of a virtual
enterprise, such as brokers or professional network organizers, can easily find their counterparts in the MAS
community—for example, various middle agents and brokers (Marík & McFarlane, 2005). The negotiation
and brokering algorithms that have proven useful for the MAS domain can serve to formalize (and later
automate) the corresponding virtual enterprise processes (Marík & McFarlane, 2005). Specialized agents
called meta-agents could also serve as tools both to help detect the network’s less efficient parts or bottlenecks
and to provide advice supporting the virtual enterprise’s self-evolution in the desired direction (Marík &
McFarlane, 2005). Virtual enterprise creation is analogous to coalition formation in the MAS domain (Marík
& McFarlane, 2005).

They also support that MAS concept of knowledge sharing, which classifies knowledge as public, private, and
semiprivate, has high potential for virtual enterprises. Requirements for keeping agents’ knowledge
confidential and preventing knowledge disclosure, as well as specific security principles used with MASs, can
be reused for virtual enterprises (Marík & McFarlane, 2005).

4.3 Current research activity focusing on Agents in Virtual Enterprises (VE)

Virtual enterprises have recently received increasing attention. Due to the advancement of distributed
information technology and the changing needs of the business community, enterprises are expected to be
more agile and responsive (Petersen et al., 2001). Many current developments in multi-agent systems (MAS)
are more and more focused on the production of robust development environments (Camarinha-Matos, 2002).
Considerable efforts are also being put on standardization of architectures and communication languages,
which are important requirements for the industrial application of the paradigm (Camarinha-Matos, 2002). We
have observed that there is a remarkable body of literature that studies the application of agent technology to
virtual enterprises as researchers pay enough attention to this scientific area of activity. In continuance of the
study, some prominent research efforts follow.

According to Yonghe & Biqing (1999), decision and control processes within the domain of virtual
enterprises have not received deserved attention till now. Based on agent technology, they bought up an
architecture for control and decision-making during the dynamic creation and operation of a virtual enterprise.
An approach for integrating different business units is presented (Yonghe & Biqing, 1999). A prototype
software simulating the design of a new product in a virtual enterprise is developed (Yonghe & Biqing, 1999).

Petersen et al. (2003) present the virtual enterprise formation process as an agent interaction protocol and an
approach to its implementation. They have focussed on the selection of partners within the formation process
in order to understand these interactions and the contents of the messages that are exchanged between the
agents. Based on this, they describe how the AGORA multi-agent architecture can be used to support the
formation of a virtual enterprise.

Gou et al. (2001) propose an agent-based virtual enterprise model and provide the agent collaboration
mechanisms under the model, thereby achieving the agent based virtual enterprise modeling and operation
control. Their agent-based approach achieves distributed control over the whole business process execution of
the virtual enterprise.

According to Fankhauser & Tesch (1999), negotiations encourage agents to reason about the interests of their
opponents. Thus, negotiations suffer from counter speculations (Fankhauser & Tesch, 1999). Auctions apply
to asymmetric trading only; they either favor the auctioneer or the bidders (Fankhauser & Tesch, 1999). Both
mechanisms do not promote agents to tell the truth (Fankhauser & Tesch, 1999). Therefore, they propose to
use a trustbroker to mediate between the agents. They introduce three symmetric, negotiation free one-step
protocols to carry out a sequence of decisions for agents with possibly conflicting interests. The protocols
achieve substantially better overall benefit than random or hostile selection, and they avoid lies (Fankhauser
& Tesch, 1999). They analyze the protocols with respect to informed vs. uninformed lies, and with respect to
beneficial vs. malevolent lies, and show that agents are best off to know and announce their true interests.

Gong’s & Wang’s (2000) research is a contribution to the model of multi-agent system (MAS) for supporting
the dynamic enterprise model (DEM). It separates the business process from the organizational structure
(organizational structure tier and business process tier), models each of them as MAS, and coordinates agents
by the 'yellow page" mechanism (Gong’s & Wang’s, 2000). This model not only can regulate itself in terms of
DEM, but also centered on the coordination strategies between agents composing it (Gong’s & Wang’s,
2000). It is believed that the model of MAS is a practical way to build flexible enterprise information system
(Gong’s & Wang’s, 2000).

Chrysanthis et al. (1999) view the establishment of a virtual enterprise as a problem of dynamically expanding
and integrating workflows in decentralized, autonomous and interacting workflow management systems. They
focus on the idea of mobile agents called adlets and their use in establishing virtual enterprises that involves
advertising, negotiating and exchanging control information and data as well as its management.

Szirbik et al. (2000) propose a systematisation of the monitoring and control aspects in a virtual enterprise. As
an instrument, they use the mobile agent paradigm, defining the concept of a mobile agent web (MA-web).
According to them, one of the roles of the agents in this environment is to mediate negotiations between the
parties of the virtual enterprise. They make some assumptions about the new behaviour and code of conduct
in the MA-web, such as the willingness to share data and knowledge.

Based on the analysis of why agent-based mechanism is suitable and only suitable for cross-domain
cooperation of virtual enterprise, Zhang et al. (2004) propose a framework to implement it. In their
framework, there is a service information supply-demand center which is in charge of service information
management and agent is responsible for cooperative partner selecting before cooperation and interaction
during cooperation. The relevant key strategies and basic interaction models are also described (Zhang et al.,
2004).

Ouzounis & Tschammer (2001) discuss concepts and technologies that are considered to satisfy key
requirements of dynamic virtual enterprises, and propose DIVE, a framework for the specification, execution
and management of shared business processes in dynamic virtual enterprises.

Suh et al. (2005) describe an open .and flexible infrastructure to support dynamic collaboration among
companies through the entire lifecycle of the virtual enterprise. The proposed approach is an agent-enhanced
architecture on which the conversation model is grafted (Suh et al., 2005). The collaboration among
enterprises is modeled by a collaboration policy which is a machine-readable specification of a pattern of
message exchange among agents participating in the collaboration (Suh et al., 2005).

5. Future trends

Luck et al. (2006) stated a thorough and outstanding approach about the future of multi-agent systems. As we
consider their point of view extremely prominent, we appose at this point of the chapter some parts of their
findings (for a more complete investigation consult. Luck et al. (2006) extrapolated future trends in multi-
agent systems by classifying them into four broad phases (current, short-term future, medium-term future and
long-term future) of development of multi-agent system technology over the next decade.

At first phase, multi-agent systems are typically designed by one design team for one corporate environment,
with participating agents sharing common high level goals in a single domain (Luck et al., 2006). These
systems may be characterised as closed (Luck et al., 2006). The communication languages and interaction
protocols are typically in-house protocols, defined by the design team prior to any agent interactions (Luck et

al., 2006). Design approaches, as well as development platforms, tend to be ad hoc, inspired by the agent
paradigm (Luck et al., 2006). There is also an increased focus on taking methodologies out of the laboratory
and into development environments, with commercial work being done on establishing industrial-strength
development techniques and notations (Luck et al., 2006).

In the short-term future, multi-agent systems will increasingly be designed to cross corporate boundaries, so
that the participating agents have fewer goals in common, although their interactions will still concern a
common domain, and the agents will be designed by the same team, and will share common domain
knowledge (Luck et al., 2006). Standard agent communication languages will be used, but interaction
protocols will be mixed between standard and non-standard ones (Luck et al., 2006). Development
methodologies, languages and tools will have reached a degree of maturity, and systems will be designed on
top of standard infrastructures such as web services or Grid services, for example (Luck et al., 2006).

In the medium term future, multi-agent systems will permit participation by heterogeneous agents, designed
by different designers or teams (Luck et al., 2006). Any agent will be able to participate in these systems,
provided their (observable) behaviour conforms to publicly-stated requirements and standards (Luck et al.,
2006). However, these open systems will typically be specific to particular application domains (Luck et al.,
2006). The languages and protocols used in these systems will be agreed and standardised (Luck et al., 2006).

In the long-term future, we will see the development of open multi-agent systems spanning multiple
application domains, and involving heterogeneous participants developed by diverse design teams (Luck et
al., 2006). Agents seeking to participate in these systems will be able to learn the appropriate behaviour for
participation in the course of interacting, rather than having to prove adherence before entry (Luck et al.,
2006). Selection of communications protocols and mechanisms, and of participant strategies, will be
undertaken automatically, without human intervention (Luck et al., 2006).

The above mentioned aspect about future is enhanced with the AOSE Technical Forum Group’s (2004)
perception of the future trends in the area of agent-oriented software engineering. According to AOSE
Technical Forum Group (2004), the research in the area of agent-oriented software engineering is still in its
early stages, and several challenges need to be faced before agent-oriented software engineering becoming a
widely accepted and a practically usable paradigm for the development of complex software systems. One
possible way to identify and frame the key research challenges in the area of agent-oriented software
engineering is to recognize that such challenges may be very different depending on the “scale of
observation” adopted to model and build a software system (AOSE Technical Forum Group, 2004).

At one extreme, the micro scale of observation is that where the system to be engineered has to rely on the
controllable and predictable behaviour of (a typically limited number of) individual agents, as well as on their
mutual interactions (AOSE Technical Forum Group, 2004). There, the key engineering challenges are related
to extending traditional software engineering approaches toward agent-oriented abstractions (AOSE Technical
Forum Group, 2004). Brand new modelling and notational tools, as well as possibly brand new software
process models may be needed (AOSE Technical Forum Group, 2004).

At the other extreme, the macro scale of observation is the one where a multi-agent system is conceived as a
multitude of interacting agents, for which the overall behaviour of the system, rather than the mere behaviour
of individuals, is the key of interest (AOSE Technical Forum Group, 2004). In this case, a discipline of agent-
oriented software engineering should focus on totally different problems, and should be able to develop novel
“systemic” approaches to software engineering, possibly getting inspiration from areas such as complex
systems sciences and systemic biology (AOSE Technical Forum Group, 2004).

In between, the meso scale of observation is that where the need of predictability and control typical of the
micro scale clashes with the emergence of phenomena typical of the macro scale (AOSE Technical Forum
Group, 2004). Therefore, any engineering approach at the meso scale requires accounting for problems that
are typical of both the micro and the macro scale, and possibly for new problems specific to the meso scale
(AOSE Technical Forum Group, 2004). These include: identifying the boundaries of a systems – which may
be challenging in the case of open multi-agent systems; electing trust as a primary design issue; identifying
suitable infrastructures for multi-agent systems support (AOSE Technical Forum Group, 2004).

As concerns the virtual enterprises’ scientific domain, we believe that agent technology has much to offer
with respect to the formation and the operation of a virtual enterprise. According to Camarinha-Matos (2002),
several challenges remain open for MAS requiring further research, such as support for the full life cycle of

the virtual enterprise, adoption of contract-based coordination models, necessary integration of MAS with
several other paradigms, interoperation with legacy systems and enterprise applications, inclusion of
specialized protocols and standards, and support of robust safety mechanisms.

There is a need to integrate ACL with mechanisms for safe communications (cryptography, digital signature,
certification, etc.) that have been developed for virtual enterprises and e-commerce (Camarinha-Matos, 2002).
The development of advanced simulation tools to support planning, optimization, and assessment of operation
of virtual enterprises and distributed business processes is another open challenge that can benefit from a
MAS approach (Camarinha-Matos, 2002). Finally it is important to stress that in order to be accepted by the
industrial community, MAS applications need to be successfully demonstrated in complex real world pilot
systems (Camarinha-Matos, 2002).

5. Conclusion

The area of software agents is vibrant and rapidly developing. A number of fundamental advances have been
made in the design and the implementation of software agents as well as in the interaction between software
agents. In this brief chapter, we have tried to convey some of the key concepts of the active field of software
agents and make a reference point to a large body of literature outlining essential issues. We were limited to
enumerate our findings of our survey regarding software agent technology, instead of judge them, aiming to
provide a synoptic review of the basic aspects. It is up to the reader to judge how successful we have been in
meeting our goal in this chapter. In addition, we have argued the issue of applying the agent technology to
virtual enterprise. Our purpose was to offer a brief introduction of the application of agent technology to
virtual enterprises and to provide some useful hints for further studying concerning the above mentioned
theme.

References

Nwana, H., & Ndumu, D. (1996). A Brief Introduction to Software Agent Technology. Unicom Seminar on
“Real-World Applications of Intelligent Agent Technology”, London UK, 6/11-13/96, 278-292.
Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: theory and practice. The Knowledge
Engineering Review 10(2), 115-152.
Oliveira, E., Fischer, K., & Stepankova, O. (1999). Multi-agent systems: which research for which
applications. Robotics and Autonomous Systems, 27, 91-106.
Nwana, H. S. (1996). Software Agents: An Overview. Knowledge Engineering Review, 11(3), 1-40.
Sycara, K. P. (1998). Multi-agent Systems. AI magazine, Intelligent Agents Summer, 19(2), 79-92.
Jennings, N. R., Sycara, K., & Wooldridge, M. (1998). A Roadmap of Agent Research and development.
Autonomous Agents and Multi-Agent Systems Journal (Eds.), Boston, Kluwer Academic Publishers, 1(1), 7-
38.
Wooldridge, M. (1998). Agent-based computing. Interoperable Communication Networks, 1(1), 71-97.
Weiß, G. (2002). Agent orientation in software engineering. Knowledge Engineering Review, 16(4), 349–373.
Jennings, N. R., Norman, T. J., & Faratin, P. (1998). ADEPT: An Agent-based Approach to Business Process
Management. ACM SIGMOD Record, 27(4), 32-39.
Camarinha-Matos, L. M. (2002). Multi-agent systems in virtual enterprises. Proceedings of AIS’2002 –
International Conference on AI, Simulation and Planning in High Autonomy Systems, SCS publication,
Lisbon, Portugal, 27-36.
Petersen, S. A.., Divitini, M., & Matskin, M. (2001). An agent-based approach to modeling virtual enterprises.
Production Planning & Control, 12(3), 224-233.
Camarinha-Matos, L. M., & Afsarmanesh, H. (1998). Cooperative Systems Challenges in Virtual Enterprises.
Proceedings of CESA’98 - IMCAS Multiconference on Computational Engineering in Systems Applications,
Nabeu - Hammamet, Tunisia.
Jennings, N., & Wooldridge, M. (1996). Software Agents. IEE Review, 17-20.
Bradshow, J. M. (1997). An Introduction to Software Agents. Software Agents, J. M. Bradshow, Cambridge,
MIT Press.
Hayes, C. C. (1999). Agents in a Nutshell-A Very Brief Introduction. IEEE Transactions on Knowledge and
Data Engineering, 11(1), 127-132.
Green, S., Hurst, L., Nangle, B., Cunningham, D. P., Somers, F., & Evans, D. R. (1997). Software agents: a
review. Technical report, TCS-CS-1997-06, Trinity College Dublin, Broadcom Éireann Research Ltd..
Zambonelli, F., Jennings, N., & Wooldridge, M. (2003). Developing Multiagent Systems: the Gaia
Methology. ACM Transactions on Software Engineering and Methodology, 12(3).

Chira, C. (2003). Software Agents, IDIMS Report, 2/21/03, http://pan.nuigalway.ie/code/docs/agents.pdf
Alonso, E. (2002). AI and agents: State of the art. AI Magazine, 23(3), 25-29.
Sycara, K. P. (1998). The many faces of agents. AI Magazine 19(2), 11-12
Odell, J. (2000). Agents: Technology and usage (Part 1). Executive Report 3(4).
Etzioni, O., & Weld, D. S. (1995). Intelligent agents on the Internet: Fact, Fiction and Forecast. IEEE Expert,
10(4), 44-49.
Horn, E., Kupries, M., & Reinke, T. (1999). Properties and Models of Software Agents and Prefabrication for
Agent Application Systems. (32) Hawaii: International Conference on System Sciences (HICSS-32), Software
Technology Track.
Goodwin, R. (1993). Formalizing properties of agents. Technical report, School of Computer Science,
Carnegie-Mellon University, Pittsburgh.
Franklin, S., & Graesser, A. (1996). Is it an Agent, or just a Program? : A Taxonomy for Autonomous Agents.
Proceedings of the Third International Workshop on Agent Theories, Architectures and Languages.
Wooldridge, M. (1999). Intelligent Agents, The MIT Press.
Kostakos, V., & Taraschi, C. (2001). Agents. http://www.cs.bath.ac.uk/~vk/files/agents.pdf
Bussink, D. (2004). A Comparison of Language Evolution and Communication Protocols in Multi-agent
Systems. 1st Twente Student Conference on IT, Track C - Intelligent_Interaction,
http://referaat.ewi.utwente.nl/
OMG Agent Working Group (2000), Agent Technology. Green paper, OMG Document ec/8/1/00, (1).
URL1: CORBA® BASICS, http://www.omg.org/gettingstarted/corbafaq.htm
URL2: www.omg.org
URL3: The CORBA Object Group Service. A Service Approach to Object Groups in CORBA, No 1867
(1998), http://lsrwww.epfl.ch/OGS/thesis/
URL4: http://www.creativescience.com/Products/soa.shtml
Bracho, A., Matteo, A., & Metzner, Ch. (1999). A taxonomy fro comparing distributed objects technologies.
CLEI Electronic Journal 2 (2).
URL5: http://java.sun.com/products/jdk/rmi/
URL6: DCOM Technical Overview, Microsoft Corporation (1996),
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndcom/html/msdn_dcomtec.asp
URL7: Tuukka Vartiainen, Java Beans and Enterprise Java Beans,
http://www.cs.helsinki.fi/u/campa/teaching/tukka-final.pdf
Nwana, H., & Wooldridge, M. (1996). Software Agent Technologies. BT Technology Journal 14(4), 68-78.
Serenko & Deltor, B. (2002). Agent Toolkits: A General Overview of the Market and an Assessment of
Instructor Satisfaction with Utilizing in the Classroom. Working Paper #455,
http://www.business.mcmaster.ca/msis/profs/detlorb/nserc/McMaster_Working_Paper_455.pdf
URL8: Agent-Oriented Software Engineering. “Research Area Examination” (2005),
http://www.deg.byu.edu/proposals/ResearchAreaExamMuhammedJM.pdf
Iglesias, C.A., Garijo, M., & Gonzalez, J.C. (1999). A Survey of Agent-Oriented Methologies. Intelligent
Agents V, Proceedings of the Fifth International Workshop on Agent Theories, Architectures, and Languages
(ATAL-98), Lecture Notes in Artificial Intelligence. Springer-Verlag, Heidelberg, 1555, 317-330.
Cernuzzi, L., Cossentino, M., & Zambonelli, F. (2004). Process Models for Agent-Based Development.
International Journal on Engineering Applications of Artificial Intelligence (EAAI), Elsevier,
http://www.pa.icar.cnr.it/~cossentino/paper/eaai_zambonelli_draft.pdf
Wooldridge, M., & Ciancarini, P. (2000). Agent-Oriented Software Engineering: The State of the Art. First
Int. Workshop on Agent-Oriented Software Engineering, P. Ciancarini and M. Wooldridge (ed.), Springer-
Verlag, Berlin, 1957, 1-28.
URL9: AOSE Methologies, http://www.science.unitn.it/~recla/aose/
Putnik, G. D. (2004). Virtual Enterprise as a “flow” enterprise. Fourth Annual Meeting of the European Chaos
and Complexity in Organisations Network ECCON - ECCON 2005, Driebergen, Netherlands.
Gijsen, J. W. J., Szirbik, N. B., & Wagner, G. (2002). Agent Technologies for Virtual Enterprises in the One-
of-a-kind-Production Industry. International Journal of Electronic Commerce, 7(1), 9-26.
Freitas Mundim, A. P. Rossi, A.., & Stocchetti, A.. (2000). SME in Global Market: Challenges, Opportunities
and Threats. Brasilian Electronic Journal of Economics, 3(1).
Do, V., Halatchev, M., & Neumann, D. (2000). A contextbased approach to support virtual enterprises.
Proceedings of the 33rd Hawaii International Conference on System Sciences
Marίk, V., & McFarlane, D. C. (2005). Industrial Adoption of Agent-Based Technologies. IEEE Intelligent
Systems 20(1), 27-35
B. R. Katz, B. R., & Schuh, G. (1999). The Virtual Enterprise. Book,
http://portal.cetim.org/file/1/68/KatzySchuh-1999-The_virtual_enterprise.pdf
Fox, M.S., & Gruninger, M., (1998). Enterprise Modelling. AI Magazine, AAAI Press, 109-121.

http://pan.nuigalway.ie/code/docs/agents.pdf
http://www.cs.bath.ac.uk/%7Evk/files/agents.pdf
http://referaat.ewi.utwente.nl/
http://www.omg.org/gettingstarted/corbafaq.htm
http://www.omg.org/
http://lsrwww.epfl.ch/OGS/thesis/
http://www.creativescience.com/Products/soa.shtml
http://java.sun.com/products/jdk/rmi/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndcom/html/msdn_dcomtec.asp
http://www.cs.helsinki.fi/u/campa/teaching/tukka-final.pdf
http://www.business.mcmaster.ca/msis/profs/detlorb/nserc/McMaster_Working_Paper_455.pdf
http://www.deg.byu.edu/proposals/ResearchAreaExamMuhammedJM.pdf
http://www.pa.icar.cnr.it/%7Ecossentino/paper/eaai_zambonelli_draft.pdf
http://www.science.unitn.it/%7Erecla/aose/
http://www.informatik.uni-trier.de/~ley/db/journals/expert/expert20.html#MarikM05
http://www.informatik.uni-trier.de/~ley/db/journals/expert/expert20.html#MarikM05

Rahwan, I., Kowalczyk, R., & Yang, Y. (2001). Virtual Enterprise Design - BDI Agents vs. Objects.
Advances in Artificial Intelligence, Lecture Notes in Artificial Intelligence, 2112, 147-157
Yonghe, L., & Biqing, H. (1999). Virtual enterprise: an agent-based approach for decision and control.
Systems, Man, and Cybernetics, IEEE SMC ’99 Conference Proceedings, 1999 International Conference, 6,
451-456.
Petersen, S.A., Jinghai Rao, & Matskin, M. (2003). Virtual enterprise formation with agents - an approach to
implementation. Intelligent Agent Technology. IAT 2003, IEEE/VVIC International Conference, 527-530.
Gou, H., Huang, B., Liu, W., & Li, Y. (2001). Agent-based virtual enterprise modeling and operation control.
Systems, Man, and Cybernetics, 2001 IEEE International Conference, 3, 2058-2063.
Fankhauser, P., &Tesch, T. (1999). Agents, a broker, and lies. Research Issues on Data Engineering:
Information Technology for Virtual Enterprises, RIDE-VE ’99, Proceedings, Ninth International Workshop,
56-63
 Gong, B., & Wang, S. (2000). Model of MAS: supporting dynamic enterprise model. Intelligent Control and
Automation, Proceedings of the 3 World Congress, 3, 2042-2046.rd
 Chrysanthis, P. K., Znati, T., Banerjee, S., & Shi-Kuo Chang (1999). Establishing virtual enterprises by
means of mobile agents. Research Issues on Data Engineering: Information Technology for Virtual
Enterprises, RIDE-VE ’99, Proceedings, Ninth International Workshop, 116-123.
Szirbik, N., Aerts, A.., Wortmann, H., Hammer, D., & Goossenaerts, J. (2000). Mediating negotiations in a
virtual enterprise via mobile agents. Research Challenges, Proceedings, Academia/Industry Working
Conference, 237-242.
Yan Zhang, Meilin Shi, & Shaohua Zhang (2004). An agent-based framework for cross-domain cooperation
of virtual enterprise. Computer Supported Cooperative Work in Design, Proceedings, The 8 International
Conference, 1, 291-296.

th

Ouzounis, V. K., & Tschammer, V. (2001). An agent-based life cycle management for dynamic virtual
enterprises. Computer Supported Cooperative Work in Design, The Sixth International Conference, 451-459.
 Luck, M., McBurney, P., & Gonzalez-Palacios, J. (2006). Agent-Based Computing and Programming of
Agent Systems. Lecture Notes in Artificial Intelligence, Agent-Based Computing and Programming of Agent
Systems, 3862, 23-37, Springer.
AOSE Technical Forum Group (2004). AL3-TF1 Report, 30 June- 2 July, Rome,
http://www.pa.icar.cnr.it/~cossentino/al3tf1/docs/aose_tfg1_report.pdf

http://www.pa.icar.cnr.it/%7Ecossentino/al3tf1/docs/aose_tfg1_report.pdf

	URL6: DCOM Technical Overview, Microsoft Corporation (1996),

