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Summary: Tranditionally traffic control in communication networks is seeking the
optimization of a single network-wide performance objective. Thus, it is assumed that
all users and traffic classes in the network have the same objective and cooperate to
optimize it. However, in the modern Asynchronous Transfer Mode (ATM) networks,
there are multiple users and traffic classes, each with completely different objectives
and conflicting quality of service requirements. These different users and traffic classes
compete for the limited common resources of the network in order to optimize their
own objectives, ignoring the inconvenience that they cause to the others.

We model such traffic control problems in ATM networks with multiple non - co-
operative decision-makers on the path flow space. The antagonistic decision-makers
act independently but their decisions depend on those of the others since they share
the same network resources. We state conditions for existence of the non-cooperative
equilibrium and derive the non-cooperative equilibrium conditions. No decision-maker
finds beneficial to unilaterally deviate from his strategy, while the others retain theirs.
Then, we formulate the non-cooperative equilibrium conditions both as a nonlinear
complementarity problem and as a variational inequality problem.

1. Introduction

Multimedia applications involving high quality voice, CD sound, video, still images
and high speed data traffic are urgently becoming available. Examples of such applica-
tions include videoconferencing, transmission of High Definition TeleVision (HDTV),
high speed data transmission, remote work on Computer Aided Design (CAD), e.t.c.
These multimedia applications require a diversity of multiple types of services with
widely varying traffic characteristics and quality-of-service (QOS) requirements. To-
day the existing multimedia services use separate networks to transmit the voice and
the video. A future high-speed network, which is called Broadband - Integrated Ser-
vices Digital Network (B-ISDN), will have an abundance of bandwidth and will support
all these multiple types of services in an integrated way. These different service types
will share the same network resources (buffers, switches, transmission lines, e.t.c.) for
flexible and efficient resource sharing. This integration of voice, video, data e.t.c. in
a common network offers potential cost savings through the sharing of the switching
and transmission facilities, flexible internetworking among networks utilizing different
transmission media, and enhanced services for multimedia applications. Using a single
network to support all these different service types will result in an integrated network
planning, management, maintenance, monitoring, security, accounting and billing.
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Asynchronous Transfer Mode (ATM) has been accepted as the transport mode
for implementing Broadband Integrated Services Digital Networks (B-ISDN). In these
networks different traffic classes with widely varying characteristics and conflicting
service requirements will be statistically multiplexed and share common switching and
transmission resources. It is important to control the traffic and the network resources
to provide guaranteed levels of Quality of Service (QOS) for these different traffic
classes [1]. In this paper, we control the traffic using admission, routing and load
sharing control.

Most previous research assumes a single traffic class and the optimization of a
single objective function. However, in an ATM network there are multiple users and
traffic classes (each one with possibly different objective function) that compete for
the limited common resources of the network. Each decision-maker tries to optimize
his own objectives, ignoring the inconvenience that he causes to the others. In this
paper, we consider such multiple non-cooperative users and traffic classes with different
objectives and formulate the problem both as a Nonlinear Complementarity Problem
(NCP) and as a Variational Inequality Problem (VIP). The formulation of the non-
cooperative equilibrium conditions characterizing the problem as a NCP or a VIP opens
the theory of NCP and VIP for the study and algorithmic solution of it. We also solve
specific routing problems with antagonistic decision-makers as Nash games [2,3] and
as Stackelberg games [4]. Furthermore, we formulate the resource sharing problem for
hierarchical decision-makers (one decision-maker is more powerful than the others) as
NCP and VIP [5].

2. Queueing Model

In this section, we introduce the analytical model that integrates the admission,
routing and load sharing decisions in ATM networks. We formulate the problem on
the path flow space, such that the decisions are done at the source nodes. The main
purpose of this paper is to introduce the NCP and VIP formulation for non-cooperative
traffic control. So, we employ a simple network model rather than a more complete
but complex model. The formulation can easily be applied to more complex network
models.

Decision-maker c sends traffic to the network for processing and communication.
He sends traffic at some source nodes [s.] and requires processing wherever possible
in the network. The selection of the destination computer sites, where his traffic is
to be processed, constitutes the load sharing decisions. Let that he sends a fraction
ψc

[sd] ≥ 0 of his traffic to destination [.d]. Of cource, the sum of the load sharing
fractions from source [s.] to all possible destinations [.d] from this source is equal to
one,

∑

[.d]

ψc
[sd] = 1 ∀ [s.].

After deciding which fraction of his traffic will be processed by destination [.d], the
decision-maker c must decide which route his traffic will follow to this destination -
these are the routing decisions. However, he may decide not to admit some portion
of his traffic, for congestion control reasons. So, let that he rejects a fraction φc

o[sd] ≥
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0 and routes a fraction φc
π[sd] ≥ 0 of his traffic over a possible path π[sd] for the

source-destination pair [sd]. Of cource, the sum of the rejection fraction and the
routing fractions over all possible paths for this source-destination pair is equal to one,
φc

o[sd] +
∑

π[sd]

φc
π[sd] = 1 ∀ [sd].

Let define a single vector for all decision variables for decision-maker c, Xc =
[..., φc

o[sd], ..., φ
c
π[sd], ..., ψ

c
[sd], ...]

T , it must hold Xc ≥ 0. Define also the vector for all

decision-makers: X = [X1, ...,Xc, ...,XC ]T ≥ 0, and the vector for all decision-makers
except of decision-maker c: X̄c = [X1, ...,Xc−1, Xc+1, ...,XC ]T ≥ 0.

In addition, these decision variables must satisfy the conservation equalities: the
sum of the admission and routing fractions for all paths π[sd] between a given source
destination pair [sd] is equal to 1, φc

o[sd] +
∑

π[sd]

φc
π[sd] = 1 ∀ [sd], and the sum of

the load sharing fractions from the source [s.] to every possible destination [.d] from
this source is equal to 1,

∑

[.d]

ψc
[sd] = 1 ∀ [s.]. Let define the vector Kc(Xc) =

[..., φc
o[sd] +

∑

π[sd]

φc
π[sd], ...,

∑

[.d]

ψc
[sd], ...]

T , it must hold Kc(Xc) = I. Define also the vec-

tor for all decision-makers: K(X) = [K1(X1), ...,Kc(Xc), ..., KC(XC)]T = I, and for
all decision-makers except of decision-maker c: K̄c(X̄c) = [K1(X1), ...,Kc−1(Xc−1),
Kc+1(Xc+1), ...,KC(XC)]T = I.

The cost function for decision-maker c over the whole network, J c(X), is the sum
of his cost functions over all network resources. Next, we give some examples of cost
functions at a network resource (node, link, computing site, etc.). Throughout this
paper, all cost functions are considered to be nonnegative and bounded. Also, the
feasibility set is considered to be nonempty. Let the total arrival rate to the network
be λ. Packets from decision-maker c arrive at rate λc (Poisson) at this resource and
require service (general distribution) with mean 1/µ and second moment x2.

i) Let model this resource as an M/G/1 queue with service rate C and let τ be
a flow independent constant delay (e.g. propagation delay) at this resource. We may
take as cost function for decision-maker c at this resource the weighted average packet
delay [6]:

J c
resource =

λc

λ
∗









1

µC
+

∑

k

λk ∗ x2 ∗ µC

2 ∗ (µC −
∑

k

λk)
+ τ









ii) Consider a network resource with m servers, each at service rate C. We may take
as cost function for decision-maker c at this resource the weighted Erlang’s C formula
(probability of queueing)

J c
resource =

λc

λ
∗ PQ
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where

PQ =

(

∑

k λ
k

µC

)m

m!
∗

m ∗ µC

m ∗ µC −
∑

k

λk

m−1
∑

n=0

(

∑

k λ
k

µC

)n

n!
+

(

∑

k λ
k

µC

)m

m!
∗

m ∗ µC

m ∗ µC −
∑

k

λk

iii) Consider a network resource with m servers, each at service rate C and no
buffers. We may take as cost function for decision-maker c at this resource the weighted
Erlang’s B formula (or Erlang’s loss formula)

J c
resource =

λc

λ
∗B(m)

where

B(m) =

(

∑

k λ
k

µC

)m

m!

m
∑

n=1

(

∑

k λ
k

µC

)n

n!

In the optimization problem, we shall use the Lagrangian function, which we define
next:

Lc(X,Qc) = J c(X) +
∑

[sd]

Qc
[sd] ∗



1 − φc
o[sd] −

∑

π[sd]

φc
π[sd]



+

+
∑

[s.]

Qc
[s.] ∗



1 −
∑

[.d]

ψc
[sd]





with φc
o[sd], φ

c
π[sd], ψ

c
[sd] ≥ 0 ∀ π[sd], [sd], c.

where Qc = [..., Qc
[sd], ..., Q

c
[s.], ...]

T is the vector of decision-maker c multipliers for
the constraints of the admission, routing and load sharing fractions. Let also define
the vector for all decision-makers: Q = [Q1, ...,Qc, ...,QC ]T

In the next sections, we consider that the multiple decision-makers compete for
the limited network resources and try to use the resources of the network for their
own benefit, ignoring the penalty they cause to the other decision-makers. When the
decision-makers are in equilibrium, no decision-maker can improve his cost by altering
his decision unilaterally. We express the non-cooperative equilibrium conditions as a
NCP and a VIP.
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3. Nonlinear Complementarity Problem Formulation

In this section, we formulate the non-cooperative multi-objective joint problem as a
Nonlinear Complementarity Problem (NCP). Let define the gradient vector for the cost
function derivatives with respect to the admission, routing and load sharing fractions
for all decision-makers:

∇J(X) =



...,
∂J c(X)

∂φc
o[sd]

, ...,
∂J c(X)

∂φc
π[sd]

, ...,
∂J c(X)

∂ψc
[sd]

, ...





T

Theorem 1:

Consider the multi-objective joint admission, routing and load sharing problem in

networks with multiple non-cooperative decision-makers. If for each decision-maker

c, J c is differentiable and convex in Xc ≥ 0, Kc(Xc) = I for each fixed value of

X̄c ≥ 0, K̄c(X̄c) = I, then X∗ ≥ 0,Kc(X∗) = I is a non-cooperative equilibrium if and

only if it solves the following Nonlinear Complementarity Problem:

[∇J(X∗) − Q I − K(X∗)]T ∗ [X∗ Q] = 0

[∇J(X∗) − Q I − K(X∗)] ≥ 0

[X∗ Q] ≥ 0

Proof: For each decision-maker c, we have the following problem

minimize J c(X1∗, ...,Xc, ...,XC∗)
with respect to Xc

such that Xc ≥ 0, X̄c∗ ≥ 0, Kc(Xc) = I, K̄c(X̄c∗) = I

The Lagrangian for each decision-maker c is

Lc = J c +
∑

[sd]

Qc
[sd] ∗



1 − φc
o[sd] −

∑

π[sd]

φc
π[sd]



+
∑

[s.]

Qc
[s.] ∗



1 −
∑

[.d]

ψc
[sd]





with φc
o[sd], φ

c
π[sd], ψ

c
[sd] ≥ 0 ∀ π[sd], [sd], c

The cost function for each decision-maker c, J c, is convex in Xc ≥ 0,Kc(Xc) = I,
so the Karush-Kuhn-Tucker necessary conditions are also sufficient:

∂Lc(X∗,Qc)

∂φc
o[sd]

∗ φc∗
o[sd] = 0 ⇒ [

∂J c(X∗)

∂φc
o[sd]

−Qc
[sd]] ∗ φ

c∗
o[sd] = 0 ∀ [sd], c

∂Lc(X∗,Qc)

∂φc
π[sd]

∗ φc∗
π[sd] = 0 ⇒ [

∂J c(X∗)

∂φc
π[sd]

−Qc
[sd]] ∗ φ

c∗
π[sd] = 0 ∀ π[sd], [sd], c

∂Lc(X∗,Qc)

∂ψc
[sd]

∗ ψc∗
[sd] = 0 ⇒ [

∂J c(X∗)

∂ψc
[sd]

−Qc
[s.]] ∗ ψ

c∗
[sd] = 0 ∀ [.d], [s.], c
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∂Lc(X∗,Qc)

∂φc
o[sd]

≥ 0 ⇒
∂J c(X∗)

∂φc
o[sd]

−Qc
[sd] ≥ 0 ∀ [sd], c

∂Lc(X∗,Qc)

∂φc
π[sd]

≥ 0 ⇒
∂J c(X∗,Ψ∗)

∂φc
π[sd]

−Qc
[sd] ≥ 0 ∀ π[sd], [sd], c

∂Lc(X∗,Qc)

∂ψc
[sd]

≥ 0 ⇒
∂J c(X∗)

∂ψc
[sd]

−Qc
[s.] ≥ 0 ∀ [.d], [s.], c

∂Lc(X∗,Qc)

∂Qc
[sd]

= 0 ⇒ φc∗
o[sd] +

∑

π[sd]

φc∗
π[sd] = 1 ∀ [sd], c

∂Lc(X∗,Q)

∂Qc
[s.]

= 0 ⇒
∑

[.d]

ψc∗
[sd] = 1 ∀ [s.], c

φc∗
o[sd], φ

c∗
π[sd] ≥ 0 ∀ π[sd], [sd], c

ψc∗
[sd] ≥ 0 ∀ [.d], [s.], c

After some algebraic manipulations, we find that the NCP as defined in the Theorem
is equivalent to the Karush-Kuhn-Tucker necessary and sufficient conditions. 2

Theorem 2: existence

Consider the multi-objective joint admission, routing and load sharing problem in

networks with multiple non-cooperative decision-makers.

If [∇J(X) − Q I − K(X)] is differentiable in [X Q] ≥ 0,K(X) = I

and its Jacobian matrix is strongly copositive in [X Q] ≥ 0,K(X) = I

then there exists a non-cooperative equilibrium.

Proof: It is known [7], that the NCP: x∗f(x) = 0; f(x) ≥ 0; x ≥ 0 has a solution
if f is differentiable in En

+ and its Jacobian matrix is strongly copositive in En
+. 2

4. Variational Inequality Problem Formulation

In this section, we formulate the non-cooperative multi-objective problem as a Vari-
ational Inequality Problem (VIP).

Theorem 3:

Consider the multi-objective join admission, routing and load sharing problem in

networks with multiple non-cooperative decision-makers.
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If for each decision-maker c, J c is continuously differentiable and convex in Xc ≥

0,Kc(Xc) = I for each fixed value of X̄c ≥ 0, K̄c(X̄c) = I,

then X∗ ≥ 0,K(X∗) = I, is a non-cooperative equilibrium if and only if it solves

the following Variational Inequality Problem:

∇J(X∗) ∗ (X − X∗) ≥ 0 ∀ X ≥ 0,K(X) = I,

Proof: If Xc∗ is a local minimum for the following minimization problem

minimize J c(X1∗, ...,Xc, ...,XC∗)
with respect to Xc

such that Xc ≥ 0, X̄c∗ ≥ 0, Kc(Xc) = I, K̄c(X̄c∗) = I

and J c is a continuously differentiable convex function over the nonempty convex,
closed and bounded set X ≥ 0,K(X) = I, then

∑

[sd]







∂J c(X∗)

∂φc
o[sd]

∗ (φc
o[sd] − φc∗

o[sd]) +
∑

π[sd]

∂J c(X∗)

∂φc
π[sd]

∗ (φc
π[sd] − φc∗

π[sd]) +

+
∂J c(X∗)

∂ψc
[sd]

∗ (ψc
[sd] − ψc∗

[sd])







≥ 0 ∀ Xc ≥ 0,Kc(Xc) = I, c

Summing over all decision-makers

∑

c

∑

[sd]







∂J c(X∗)

∂φc
o[sd]

∗ (φc
o[sd] − φc∗

o[sd]) +
∑

π[sd]

∂J c(X∗)

∂φc
π[sd]

∗ (φc
π[sd] − φc∗

π[sd]) +

+
∂J c(X∗)

∂ψc
[sd]

∗ (ψc
[sd] − ψc∗

[sd])







≥ 0 ∀ X ≥ 0,K(X) = I

2

Another equivalent VIP formulation is given in the following Theorem:
Theorem 4:

Consider the multi-objective joint admission, routing and load sharing problem in

networks with multiple non-cooperative decision-makers. If for each decision-maker c,
J c is continuously differentiable and convex in Xc ≥ 0,Kc(Xc) = I, for each fixed value

of X̄c ≥ 0, K̄c(X̄c) = I, then X∗ ≥ 0,K(X∗) = I, is a non-cooperative equilibrium if

and only if it solves the following Variational Inequality Problem:

[∇J(X∗) − Q I − K(X∗)] ∗ [X̂ − X∗ Q̂ − Q] ≥ 0 ∀ [X̂ Q̂] > 0

Proof:
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Karamardian [8] shows that the NCP: f(x∗) ∗ x∗ = 0; f(x∗) ≥ 0; x∗ > 0
and the VIP: find x∗ such that f(x∗) ∗ (x− x∗) ≥ 0 ∀x > 0 are equivalent.2

Theorem 5: existence

Consider the multi-objective joint admission, routing and load sharing problem in

networks with multiple non-cooperative decision-makers.

If ∇J(X) is continuous on X ≥ 0,K(X) = I and bounded,

then there exists a non-cooperative equilibrium.

Proof: For a VIP: find x∗ such that f(x∗) ∗ (x−x∗) ≥ 0 ∀x ∈ K, if f is continuous
on K, then there exists a x∗ that solves VIP [9]. 2

The following Theorem follows from either the NCP or the VIP formulation.

Theorem 6:

Consider the multi-objective joint admission, routing and load sharing problem in

networks with multiple non-cooperative decision-makers. If for each decision-maker c,
J c is differentiable and convex in Xc ≥ 0,Kc(Xc) = I, for each fixed value of X̄c ≥ 0,

K̄c(X̄c) = I, then X∗ ≥ 0,K(X∗) = I, is a non-cooperative equilibrium solution if and

only if

admission control ∀[sd], c

φc∗
o[sd] > 0 only if

∂J c(X∗)

∂φc
o[sd]

≤
∂J c(X∗)

∂φc
π[sd]

∀ π[sd]

φc∗
o[sd] = 0 o.w.

routing ∀ π[sd], [s.], c

φc∗
π[sd] > 0 only if

∂J c(X∗)

∂φc
π[sd]

= min







∂J c(X∗)

∂φc
o[sd]

,min
p[sd]

∂J c(X∗)

∂φc
p[sd]







φc∗
π[sd] = 0 o.w.

load sharing ∀[sd], c

ψc∗
[sd] > 0 only if

∂J c(X∗)

∂ψc
[sd]

≤
∂J c(X∗)

∂φc
[sd

′
]

∀ [sd
′

]

ψc∗
[sd] = 0 o.w.
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φc∗
o[sd] +

∑

π[sd]

φc∗
π[sd] = 1 ∀ [sd], c

∑

[.d]

ψc∗
[sd] = 1 ∀ [s.], c

4. Conclusions

The usual approach to traffic control problems in networks is the optimization of a
single objective function as seen by the network administrator. However, in an ATM
network there are multiple users and traffic classes each one with possibly different
objective function. We consider such multiple decision-makers that compete for the
limited common resources of the network, in order to optimize their own objectives.
Each decision-maker tries to optimize his own performance objective controlling his
admission, routing and load sharing decision variables.

We state conditions for existence of the non-cooperative equilibrium and derive the
non-cooperative equilibrium conditions. When the decision-makers are in equilibrium,
no one has a rational motive to unilaterally deviate from his equilibrium strategy. Then
we express these conditions as a nonlinear complementarity problem and as variational
inequality problem.
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