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Abstract

In this paper, we consider the multi-objective routing problem
in multiple class Integrated Services Networks. We introduce a
multi-server two class queueing model where packets from the
first class can be queued, while packets from the other class
are blocked when the number of packets in the system exceeds
some threshold. Therefore, the first class wants to minimize its

average packet delay, while the other class wants to minimize
its blocking probability.

We formulate the resulting multi-objective routing problem
as a Nash game, where each class tries to minimize its own cost
function in competition with the other class. We derive the
routing policy for a two server parallel system and show the
strategy and performance of each class.

1 Introduction

Traditionally, there were separate networks (circuit/packet sw-
itched) for carrying different traffic types (voice/data). In de-
sign and control problems of such networks, the goal is opti-
mization of a single performance objective for the traffic type
carried by the network under consideration. For example, in
circuit switched networks, a voice call should be guaranteed an
acceptable delay or else it should be blocked. The objective
is then to minimize the voice blocking probability. In packet
switched networks, a data packet may be queued in buffers at
intermediate nodes, thus the objective is to minimize the packet
delay.

Current trends are for a single high speed packet switched
network, called Broadband Integrated Services Digital Network
(B-ISDN), that will support multimedia traffic (voice, data,
video, etc.) simultaneously. These multiple classes of traffic
will share the same network resources (buffers, switches, trans-
mission lines, etc.) for flexible and efficient resource sharing.
However, each class has different and conflicting performance
requirements and objectives to those of other classes. Hence
new methodologies are needed for network design and control
problems.

In this paper, we present an approach for the multiple class
routing problem based on game-theory and we explicitly solve
the routing problem for two classes of packets that share two
links, (see Figure 1). One class of packets may be queued at
the link buffers, while the second class of packets are blocked
when there is not enough space. The objective for the first
class is to minimize the delay for its packets, while the ob-
jective for the second class is to minimize its blocking proba-

bility. An application of this problem is to data/voice packet
switched networks, where data packets may be queued at the
links, while voice packets are dropped when they estimate that
they will experience unacceptable delay. Another application
is to ATM networks, where regular packets may be queued at
the link buffers, while marked packets are dropped when there
is congestion. Another application is for networks shared by
different vendors, where the first vendor has unlimited access
to the links, while the second vendor may use the links only if
the congestion level is below a threshold.

The routing problem has been formulated as a Nash game
by Economides and Silvester [9, 8, 10] and Bovopoulos [2, 3].
Another problem that has been recently formulated as a Nash
game is the flow control [5, 3, 4, 6, 13, 12, 11, 14] and the joint
load sharing, routing and congestion control problem [10].

In section 2, we introduce a multi-server two-class queueing
model, where packets from the first class are queueable, while
packets from the other class are blocked. In section 3, we for-
mulate the routing problem through a parallel system of such
multiserver queueing systems as a Nash game. In section 4, we
explicitly solve a routing problem for two queues. Finally in
section 5, we conclude on the proposed alternative formulation
for the routing problem.

2 Multi-Server Queues with Blocking

We consider a queueing system of m servers that are shared by
packets from two classes @ and 8. Class « packets arrive at rate
A% (Poisson) and if all servers are busy, then they queue in the
single queue of the system. Class 3 packets arrive at rate \?
(Poisson) and if there are more than K packets (in queue and
in service), then they are rejected. We select units so that the
length of each packet is exponentially distributed with mean 1
and the rate of each serveris 1/u. A packet receives service from
a server chosen randomly among the free servers. Furthermore,
for stability reasons it is assumed that the total arrival rate is
less than the total service rate : A% 4+ A3P[n < K| < mp.

So, class a packets can be queued, while class 3 packets
are blocked. Therefore, a reasonable objective is for class a to
minimize its average packet delay, and for class 8 to minimize
its blocking probability.

For the above queueing system, we consider two cases:

i) K > m, i.e. the blocking threshold for class B packets is
greater than or equal to the number of servers.

ii) K < m, i.e. the blocking threshold for class 3 packets is
less than or equal to the number of servers.
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21 K>m

Let first consider the case where the blocking threshold K for
class 3 packets is greater than or equal to the number of servers
m. If upon arrival a class 3 packet finds all m servers busy it
may be queued if there are less than K —m packets in the queue,
otherwise it is lost. In this case, the threshold K is selected such
that the maximum (expected) dela.y of a class 8 packet is less
than an acceptable threshold T4 _,. The maximum delay of a

class 8 packet is when upon arrival it finds K — 1 packets. It
waits until all K —m—1 in front of it in the queue plus 1 packet
in service are served at rate mu and then it enters service. So,
its expected waiting plus service time is (K —m)/mp+1/p <
ngaz = K <mpx Tmaz

The steady state probability, 7, that there are n packets in
the system is

a B\"

(A +A) ™o n<m
I n! =
@ B\ "-m o B\™

<A +,\) (,\ +A) ™ m<n<K
mu I m!
a\n—-K a B K-m a B\ ™

(A_) (,\ +A> (,\ +,\) o K<n

mu muy u ml

In order to find the probability that the system is empty

o, We use the fact that all system state probabilities sum to 1
to find:

m—1 n
Ac 4+ A8\ " 1
Mo = __l_
= ()5
Y ESE A R
mpy

a a <]
m!(l-—/\—) (1_’\_+i)
mu mu

The probability that a class 8 packet is lost is the probability
that there are at least K packets in the system :

a 8 K-m a sB\™
Pln> K] = A%+ A A% 4+ X wo/\a
=) 50 o
my

From which we can find the average number of packets in
the system, N (see [7] for details). The overall average packet
delay is :

-1

N
A%+ A8(1 - P[n > K))
and the average packet delay for class a is :
m.—l

=R e ()

n=0 © n=m mp

T:

In Appendix A, we present these performance measures for
the special cases of K =m and m = 1.

2.2 K<m

Let us now consider the case where the blocking threshold K
for class B packet is less than or equal to the number of servers
m. If upon arrival a class 3 packet finds less than K servers
busy, then it is starts been serviced, otherwise it is lost. In this
case, the threshold K can be selected such that the maximum
blocking of a class 8 packet is less than an acceptable threshold
Bf ..ie. Pln> K]< BP__. Also, the service rate of any sin-
gle server must be large enough to guarantee acceptable packet

Then the steady state probability of n packets in the system,
Ty i8S

PLEDAN
Sk
Aa PG B K
+X o K<n<m
# u n! =
T ET )
mp M m m! man

where,

K n
3 A%+ A8\" 1
n=0 I n
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) ()
Z z mb, A%
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The blocking probability for class 8 is:

a B Km-K a\n
Pln> K] = [( 2 NS .

n=0

AG

A« m—K A%+ Xﬁ K 1 E;
+{— pry AC

H M mey
We can also find the average number in system, N, (see [7]
for details),
N = E nmw,
n=0

the overall average packet delay,

N

T= X+ M(1- P[n> K))

and the class a average packet delay,
m—1
- 1 -m+1
T=E~Wn+z< }l)rﬂ
7-.—0

In Appendix B, we give details for these performance mea-
sures for the special cases K = m and K =1.
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3 A Game Theory Formulation

In this section, we consider a routing problem in a parallel
system that is composed of L multi-server queueing systems,

each of which operates like the one analyzed in the previous
section.

Suppose class ¢ packets arrive to this parallel system at
a rate A° (Poisson arrivals) and that they may use any one
of these L multi-server queueing systems in order to reach a
destination node. The fraction of class ¢ packets assigned to
multi-server queueing system i is ¢ and the vector of these
fractions for each class ¢ is ¢ = [... ¢¢ ...]. There are m;
servers at the queueing system i, each one with rate p; and the
blocking threshold is Kj.

In this paper, for simplicity, we consider two classes of pack-
ets, i.e. ¢ € {a,}. Class a packets are queueable and therefore
class o wants to minimize its average packet delay, while class
B packets are blocked and therefore class B wants to minimize
its blocking probability.

We formulate the problem as a Nash game between the two
classes, where each class knows the cost functions and con-
straints for both classes. After reaching a Nash equilibrium, no
class will have a rational motive to unilaterally deviate from its
equilibrium strategy [1].

Class a solves the following problem:

L
minimize I8, 8F) =Y 2Ty
i=1

with respect to &%
L

such that Z(ﬁf‘:l, ¢F>0 Vi
i=1

and class 3 solves the following problem:

L
TE(#>*,8P) = 3" ¢ Pln; > K

=1

minimize
with respect to &P

L
such that Sei=1, ¢f>0 vi
i=1

4 Example

Here, we consider a parallel system composed of two single-
server queueing systems, and class 8 packets are blocked when
the server is busy, i.e. L=2, K=m=1.

Then the previously defined performance measures become

T = B2 )‘2
i+ A
a4 A8
P[Blocking)? = P[n; > 1] = Af+ AZ’
s+ /\,'
4 APy
N,' = (Al + ’\1 )p'l B
(ki = A8) (s + X))
. 1
T =
YT o= Ag
7 s
fe=—1 N _
B = AF i+ AF)

If ¢¢ is the fraction of class ¢ packets routed to server i,
then we can write Af = A°¢¢ where ¢ € {a,8} and 7 € {1,2}.

Class a solves the following problem:

minimize Jo(®*, 85 =
2 1 AP
E¢‘: apx + B
o L= A% (i + AP g7
with respect to  ¢%, ¢%
2
such that thf' =1, ¢7, 4220
=1

The first and second order derivatives of J* with respect to
¢f are

2 f
m(p + A845)

0 m
¢t (m — A=¢7)?

2J 2 A

3(e)?  (m — Aog9)’

and the cross derivative of J* with respect to ¢>f, of is
§%*Je 28
987005 (i +2P47)?

Similarly for the derivatives of J* with respect to ¢ and

é5.
Class (3 solves the following problem:

minimize

2 agar 4 \B 8
JB (@, 8F) = qu(*_‘uﬁ_‘f%)
=1 Hi -+ AP

with respect to ¢f, g

2
Sel=1, ¢ 45>0

i=1

such that
The first and second order derivatives of J? with respect to
¢f are
OIF | mlm = A%¢9)
047 (1 +2P47)2
8278 22 ( — A%gg)
A (m+ 2803

and the cross derivative of J# with respect to d)f‘,qﬁf is

82Jﬁ _ /\a}l.l
BpTO,  (mn + AgP)2

Theorem: ezistence & uniqueness

Let packets from two competing classes a and 8 arrive
according to Poisson distribution. They may be transmitted
through multiple links with exponential service time distribu-
tion. Class o minimizes its average packet delay, while class B
minimizes its blocking probability. For the above routing game,
there exists a unique Nash equilibrium solution.
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Proof: The action spaces ¢f + ¢5 = 1, ¢%, ¢3 > 0 and
¢f + ¢§’ =1, ¢f , ¢f > 0 define a convex, closed and compact
set. The cost function J¥* is jointly continuous in all its argu-
ments and convex in (¢§,¢5) for each fixed value of (¢?, ¢2).
The cost function J* is jointly continuous in all its arguments
and convex in (¢f ,¢§) for each fixed value of (4%, ¢5). The
function J* + J# is continuous and convex in (¢%, 2) for each
fixed value of (¢f s ¢€ ) as well as is continuous and convex in
(42, 5) for each fixed value of (¢%, ¢%). Therefore the above
routing game admits a Nash equilibrium.

The Jacobian matrix with elements §2.J ‘/3¢§8¢£‘, ok =
a, B, i,j = 1,2 is strictly diagonally dominant for all (¢§, ¢%,
o1, 87) such that o5 +5 =1, ¢§+65 =1, 4%, 45, &, ¢ >
0, C1—A%§ — AP¢2 > 0 and Cp — A%gg — AP¢P > 0.0

The following policy gives the Nash equilibrium solution
where class o minimizes its average packet delay, while class 8
minimizes its blocking probability :

a ., _ . |#pa(p +28)
If A% < Hi 12 T 2Aﬁ

and N <[ —H— -
= A=

then ¢¢* =1, ¢f*=0

« _ {papz(p 4 NP)
If A% < pig ——_—#l YV
2

and N <y |2
pz — X

then ¢§* =0, =1

If  xe<p, M2/l —22) —m
[

and N 2 e

then ¢f* =1
gr_ i it N V(i — X%
! by Mo V(g =A%) + pe

accept the solution only if A* < pyy—

[}
1 Mgl Mgl

B2 pa(ps + M’¢’23’) p(pm + )\5¢f‘)

If A%< g, N > (fpa(pa — A%) —

[Z]
and M > il
then ¢¢* =0,
40 = B2+ A8 [
b =

Mo+ Via(pe - A%)
accept the solution only if A® < py—

M2
1 N Ml
B (e + APET)  pa(pa + N84S

If (s +2%) > )P

pa(p1 + AB)
i + M) — pa )8

« [mpz(p1 + 2P)
and A% > py — 2P

then ¢§* = argmingeso J*(4f,1)

A% >~

¢ =1
accept the solution only if

= A%GTT >0, pp — A%¢3T >0,

—_ Aa¢aa)
VB < [Paka(m )
N g M

If  pa(pa + 23%) > w8
« papta(p + AP)
A% 2> 12t 2AP
m(p2 + A8)

Hz(pz + MF) — 1 A8
then @3 = argmingeyo J*(¢$,0)

B _ 0

o=

and A% > py —

accept the solution only if

H1— Aa¢§x‘ > 07 H2 — Aa‘#g* > 0,

5o [Prpa(pe — X*95%)
AP < 111 — S H2

For all other cases:

ot = ary‘g,ﬁ;})J“(tlB‘l",qﬁl')
o>

¢8* = arg min JP(45*, 47)
#20

Note that in the above policy the cases ¢3* = ¢2* =1 and
o = 45?' = 0 do not appear. The following Corollary follows.
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Corollary: Let packets, with exponentially distributed length,
from two competing classes a and 3 arrive according to a Pois-
son distribution. They are transmitted over multiple links.
Class o minimizes its average packet delay, while class f min-
imizes its blocking probability. For the above routing game, it
is never the case that both classes use the same link exclusively.

In Figure 2, we show the Nash equilibrium fractions, ¢$*
and ¢1ﬁ *, for equal arrival rates A* = A8 and unequal service
rates, y; = 2, pp = 1.  We notice that for light load, class a
uses the faster server, while class 3 uses both servers. As the
load increases, both classes use both servers.

In Figure 3, the Nash equilibrium fractions, ¢* and ¢f ',
are plotted for a fixed class § arrival rate \® = 1 and service
rates, 1 = 2, up = 1. We notice a behavior similar to that
found in Figure 2.

In Figure 4, we consider a similar scenario except that the
arrival rate for class 8 has ben reduced by a factor of ten, i.e.,
AP = 0.1. For this case class a uses the faster server while class
B uses both servers. As the load increases, class a starts using
both servers while class 8 uses only the faster server.

We further explore this last case of small class B arrival
rate and exaggerate the difference in service rates between the
servers. In Figure 5, we consider the case where p#1 = 10 and
#2 = 1. The behavior is similar to Figure 4. For light load,
class o uses the faster server exclusively, while class 8 uses both
servers but with preference for the faster server. As the load
increases, class a continues to use the faster server, while class
B turns to the slower server and uses it without interference
from class a. However, for very heavy load, class a starts using
both servers and as shown in Figure 7, this has an immediate
impact on the blocking probability of class B. In Figure 6, the
class o mean dealy is plotted and in Figure 7, we plot the class
B blocking probability for this case. As noted, for intermediate
load there is separation between the classes and the blocking
probability of class B is independent of the class o load. For
high values of A%, class « starts to use both servers and class
B suffers more blocking.

5 Conclusions

In this paper, we have considered the routing problem in a net-
work providing integrated transport, where one class of packets
wants to minimize its average packet delay, while another class
of packets wants to minimize its blocking probability. We mod-
eled and found several performance measures for a multi-server
queueing system, where packets of the first call can be queued,
while packets of the other class are blocked when the number
of packets in the system is more than some threshold.

We then considered the routing problem through a parallel
system of such multi-server queues with blocking. We formu-
lated the problem as a Nash game between the two classes and
found the Nash equilibrium solution.

Extensions of this work may be to consider an arbitrary
network with multiple classes, where the classes having different
blocking thresholds and mean service requirements. We are also
investigating a threshold based on delay rather than queue size,
this seems to be more appropriate for different rate servers and
is modelled by different threshold at the different servers.

A Special Case

i)K=m

In this case class 3 packets can not be queued. So, if upon
arrival a class 8 packet finds all m servers busy it is lost. Then
the previously defined performance measures become :

-1 n m
’"Z Ax 4 A8\" 1 PV 1 1

n=0 K n! “ mll_A_
mp
/\a+Aﬁ m 1 To
P[n>m]=( p ) p- X
mp
m—1 n
_ Ax 4 AP 1
N = "0{"2::1 (—“ ) _—('n—l)!+
Aa
(,\a+,\t’)”‘1 m_ mu
m & 2
K m 1—1\— (1_’\_a)
muy my
- N
T A2+ MB(1 - P[n > m))
= o m—1 (A2428\" 1
Te= m{Tn (022) &+
1
(A“‘-{;Aﬁ)m# lAa + TnAa ]
SE )
m muy

iiym=1
In this case, there is only one server. Then the previously
defined performance measures become :

Ax A8 (,\a+ ,\B)K

P'n>K=
2 K] LA (,\°+,\ﬂ)"
[ 5
N =T
K K+1
A%+ AP Ao 2P
1-(K+1 +K
A% 4 28 (K+ )( 7 ) ( B ,
2 . ,\a+,\ﬁ)’
I
X py A
a B - -
<,\ +A) L S .
D
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B Special Cases

i) K = m same as in Appendix A.
iy K=1

In this case, class 8 packets may use only one server. A
class B packet arrival that finds another class B packet in ser-
vice is lost. Then the previously defined performance measures
become :

o =[1+*°+A" "‘“(A_“)";+
b Z\p/ (nt+1)
Aa -1
(*:)'""ii.*i;%l—_%r
mu

Plrn>1]=1-1m
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Figure 3: Nash equilibrium routing fractions for fixed class g
arrival rate A = 1 and varying class a, unequal server rates

=2, pp=1
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Figure 2: Nash equilibrium routing fractions for equal arrival
rates A% = A% and unequal server rates p; = 2, g = 1
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Figure 4: Nash equilibrium routing fractions for smaller fixed
class 8 arrival rate AP = 0.1 and varying class &, unequal server
rates p; = 2, pp =1
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Figure 5: Nash equilibrium routing fractions for fixed class B
arrival rate AP = 0.1 and varying class o, more unequal server
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Figure 6: Class o mean delay for fixed class 8 arrival rate
M? = 0.1 and varying class a, more unequal server rates u; =
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Figure 7: Class 3 blocking probability for fixed class § arrival
rate A® = 0.1 and varying class a, more unequal server rates

m =10, pp =1

10D.3.8.

1227






