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Abstract - Asynchnonous Transfer Mode
(ATM) networks will transfer many different
traffic classes with different service and perfor-
There will be different
users and network managers, each one with dif-
ferent control rights and power. For example, a
single chief administrator may control the ATM
network, but the users may try to exploit it for
their satisfaction ignoring the smooth operation
of the network. If the network management ig-
nores this egoistic behavior of the users, many
problems may arise in the network operation.

This paper provides the framework for for-
mulating such scenaria using game theory, op-
timal control theory and queueing theory. The
chief administrator knows the strategies of the
users and acts first. Then the users choose their
strategies trying to improve their own perfor-
mance.

mance requirements.

I. INTRODUCTION

Previous studies on networks assume that there is a
single main administrator who takes all decisions for
the control and management of the network. However,
in a network there are many different decision-makers,
each one with different’ power, requirements and con-
trol. For example, even if there is a single network
manager, there are still many different users and each
one tries to exploit the network for his exclusive ben-
efit. The network management fails if it ignores the
existence of all these different decision-makers. In this
paper, we consider this reality and define the network
management as a hierarchical game between a leader
and his followers. The leader minimizes his cost taking
in mind the reactions of the followers to his decisions.
He knows the strategy of his followers and acts first.
Then, the followers act trying to minimize their costs
on the limits imposed by the leader.

We have introduced a similar approach for quasi-
static (not dynamic) network problems in {3,4]. A
different approach for quasi-static network problems
where the decision makers have equal power uses the
Nash game theory [1,2,5,6,9,10,11,12,13,14]. In this pa-
per, we formulate dynamic hierarchical network prob-
lems as dynamic Stackelberg games.

In ATM networks there will be various multimedia
traffic that require transfer and even processing in a
computer system. If some newly arriving traffic requires
processing, then the decision-maker who controls this
traffic must decide where he will process it. This is the
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load sharing problem. However, he accepts new traf-
fic into the network only if there are free available re-
sources to satisfy the requirements of this new traffic
and simultaneously continue to provide the agreed qual-
ity of service level for his traffic that is already in the
network. The problem of controlling the newly incom-
ing traffic is the admission control problem. For his
traffic that is accepted into the network, the next prob-
lem is to determine the route that it will follow to its
destination so that the desired requirements of quality
of service are satisfied. This is the routing problem.
Previous studies ignore the interaction of these three
problems and examine each one stand alone or only the
admission control and routing problem {7]. In this pa-
per, we examine the joint dynamic admission control,
routing and load sharing problem in ATM networks.

In section II, we provide the dynamic model for ATM
networks and formulate the joint problem on the state
space using queueing theory and optimal control theory.
In section IIT, we formulate the hierarchical problem as
a dynamic Stackelberg game and provide the conditions
in 3 theorems for open-loop and closed-loop Stackelberg
equilibrium. Finally, in section IV, we conclude on the
proposed approach for dynamic hierarchical manage-
ment of ATM networks. -

II. DYNAMIC MODEL OF ATM NETWORKS

We consider that the network state continuously
changes due to the dynamic traffic fluctuations. We de-
scribe this dynamic traffic flow using nonlinear dynamic
models on the state space. Other dynamic flow mod-
els have been also used for the routing problem with a
single decision-maker {7,8]. We consider that the traffic
is ATM cells of 53 Bytes (424 bits) and arrive at the
network links and nodes with Poisson distribution.

Let traflic of decision-maker ¢ that requires process-
ing arrive at node [s.] with arrival rate 'y[i_](t) >0 at
instant ¢. Fraction d){sdl(t) > 0 of this traffic is assigned
for processing at computer system [.d]. Of course, the
sum of these fractions to all candidate computer sys-
tems must be equal to 1: zlp[id](t) =1

{.d]

So, the ¢ traflic from node [s.] to computer system [.d]
is v ](t)w'[“sd](t) In addition to node [s.], other nodes
send traffic for processing to computer system [.d].
Thus, the total ¢ traffic that arrives to computer system
[-d] for processing is: )\[‘_d](t) = Z"/[Cx H{O¥ 4 (1)

[s.

The mean number of ¢ cells at ]the computer system

[.dl, N{ 4(t), increases during a time period by the mean
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number of ¢ cells that arrive during this period, while
1t decreases by the mean number of ¢ cells that depart
(after being processed al rate Cf q) cells/sec) during this
period. Consequently, we write Lhe differential equation
for the mean number of ¢ cells that describes the state of
the computer system [.d| [14]: 7\” (1) = Al () = CLg*

2
_§ N[’fd][t) a1+ (} N[éd](z)>
k k

* (1)

2

1= NE )+ |1+ <Z N[f'd](1,)>
k k

At steady state the equation above satisfies the for-
mula for the mean number of ¢ cells for M/D/1 quenes
with muluiple classes.

In addition to the
there 1s traffic that requires transfer o some destina-
tion. lu other words, decision-maker ¢ controls traflic
only for transfer and traffic for transfer plus process-
ing. Hence, he must decide which route his total traffic
should follow to the destinations.
also decide to reject a fraction of his traffic.
for the total ¢ traffic from node [s.] to destination [.d},
he rejects a fraction q‘);[\;d](t) > 0 and sends a fraction

2N(g(1)

traffic that requires processing,

Furthermore, he may
Therefore,

@) = 0 through rcute w{sd]. Obviously, the sumn
of these rejection and lt)uting fractions must be equal
to 1t ¢ g () + D dipealt
w[sd]
So. 1f the ¢ traffic that has to be transfered from

node [s] to destination [.d] is 7{,4(1) > 0, then the
lOLdl ¢ afhc from node [s\ to destination [.d] Is:
\L[ (1) + )L[ «d] (1). 'Ihe,n. the rejected ¢ traffic

Also,

is: /\{[\d]({) = (’)[s 1 (8) + 7 ](t)'q‘“sd]( Nooraq(t)-
the ¢ traffic routed through route wfsd] is: (v T (1) +
Ty (D)5pst)-

As the traffic 1s roated through various routes,
it traverses several network links and nodes. The
traffic that passes through link 77 18 the sum of
the traffic of all routes w[sd] between every source-
destination {sd] that pass through this link: /\;'J-(t)

=30 Gl 7 O (1) (D)

[sd) w{sd],1jen[sd] .

The mean number of ¢ cells on link ij, Nf(1), in-
creases during a time period by the mean number
of ¢ cells that arrive during this period while it de-
creases by the mean number of ¢ cells that depart
{(after being transmitted at rate Cyj cells/sec) during
this period. Thus, we describe the dynamic state of
link 75 with the following differential equation for the
nean number of ¢ cells [14]: ,-’\'/[j(t) = ALt = Cyx

5

=S ONE() 1+ (L NE(t )
k
—eee " (2)
P= > ONE() + \I I+ (Z ;\'j}(x))
k k

Likewise, the traffic that traverses node 7 is the sum
of all traffic of all routes w{sd] between all source-

destination pairs [sd] that pass through this node: Af(¢)
=3 2 Ofg®+ 7 O¥q)diga)

[s.d] Tr[sd],iéw[sd] i

Similarly, we describe the dynamic state of node

i (which has speed C; cells/sec) with the fol-
lowing differential equation for the mean num-
ber of ¢ cells [14]:  NEf(t) = Ait). —
2\
oo H(mg |
: k

k
. L (3)

k
Writting all these dlfrmennal Pquatmm (1), (

2). (3)
for both decision-makers, the leader a and the follower
4. for all network resources, in a vector form, we de-
scribe the network state: N(t) = £({, N, &, ¥) where
N > 0 is the vector of the mean number of cells at all
network resources and (2, ®) € S (or (2%, ¥*) € 8¢
for the leader and (®°,®7) € SP for the follower) is
the vector of the control variables at the space where
they are defined.

Having described the dynamic network state, we de-
fine the cost function for each decision-maker ¢ from
the initial time instant g up to the final time instant

tp: J(D,¥) = /”gc(i,N({),fD(i), Y(t))dt, where
to
g°(t, N(t), 2(2), ©(1))
=3 g5 + D gt i)
ij i

- Zgo[s ZQ[ gt AL g ()

Hence, the cost function for decision-maker ¢ is com-
posed from the delay cost at every link 7j and every
node 7, minus the income from traffic admission be-
tween every source-destination [sd] and the income from
traflic processing at computer systems [.d].

Let also define his Hamiltonian:

(1~ dfq(t)

HE(t, X, &, 8, P°%) = ¢°(t, X, ®, W) + P£(t, X, &, T)

where P¢ = [... P[Ct’l]]c Picj'k Pic’k } are the vari-
ables related to the network state equations.

Finally, his Lagrangian is:

Le(t, X, %, %, P, Q°) = H(t. X, ®,%,P")

L= ¥

[.d]

+> Q-
-]

2 Qe | L= Pl — D Pipe
[sd] wlsd)

with of olsd) ,ﬂ[ a qp‘fsd] >0 ¥V ox[sd], [sd], ¢
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where Q° = [... Qf,q .- @[, -] is the vector of the
multipliers that are related with the constraints of the
control variables for decision-maker c.

II. HIERARCHICAL MANAGEMENT

Having a dynamic model that describes the state of
the ATM network with a leader o and a follower 3,
with fixed initial time to and final time ¢;, we define the
dynamic joint problem as an optimal control problem.
Due to space lumitation, we omit the proofs.

Theorem 1: If for every decision-maker ¢, his
Hamiltonian H(t,N, ® ¥ P(t)) is differentieble and
conver w.rd. (N, @, ¥ € (R",S8°) ¥Vt € [tg.ty],
Jor every constant valve of the (®%, ®*) € S*, then
(@*(1). U™ ()) € S s the Stackelberg equilibrium if and
only of ol solves the following Optimal Control Problem:

ty )
minimize / ga(t,N(t).@“(t],\l’a(i),@ﬁ(ﬂ,\I"i(t))dt
to

wort. (DY), (1), BP(1), BP(1))

sd. N(¢) = £(t, N(t), ®(t), ®(1)) N(fy) = No

(@(t), ¥“(t)) € S«

ty
[,
to
ty
min /
to

(B(1), T5(1))eS?

(®7(1). ®P(1)) € S#

(1), B7(1)
T (1), BP(1)

Jdt

D(1), @° (1)
(1), BO(t)

g (t, N(1), Ydt

Theorem 2: Let for each decision-maker c, his
Hamaltonian H({,N.®, ¥, P(1)) is differentiable and
conver w.rt. (N, @ ®%) ¢ (R", 8% Vi € [to,1y],
for every constant value of (®F,®*) ¢ Sk If
(®*(¢t, Ng). ‘i’*(t, Ng)) = (®*(¢ QQ (%)) is an open-loop
Stackelberg equilibrium and {N ), t € [to,ts]} is the
corresponding state trajectory. then 3 P(1) : [o, t5] —
R, V¢ continuous and continuously differentiable vec-
tor function, such that ¥ t € [ty t5]:

i
minimize / g (L, N(2)
tg

L R(), B(), B (1),

wort. (®2(t), T(t). B%(1), ¥ (1), QP (1))
s N(t) = £(¢. N(t), ®(1), B(1)), N(io) = N
Pt = VN H (N, ®(1), (1), P?(1))

PA(t)=0

Z')Hﬁ 5 }
— = Q. g(t)] - O ((t):O
Py » [sd] [s)
j 2
—0[—{— Q'['Ld](z‘) >0 VY [sd]
e ‘

T (t))dt 4.

oHs
- Qg (1)} ¢l () =0,

ad)w[sd] [sd] [sd]

oHP

— Q[Sd( )> 0 Vw[sd], [sd]
04}5 w[sd]

oHP

~ QL) gt =

[()d} ‘“ﬂ [s] [sd]

OHP
—~Q" (020 VId, [s]
CW

o[sd] + Z d) sd]

w[sd]
qﬁg{sd](f), (/ﬁ?[sd](t) >0 VYow[sd], [sd]
Yowtat) =1, vha) =0 V[d], [s]
(-]
d’f{sd](t) + Z qj}:[sd](t) =
w[sd]

¢’f[sd](1)y ‘155[54](1) >0 wlsd], [sd]
Zwsd =1 ¥ig® 20 v{d, [s]
Theorem 3:  Let for each decision-maker c,

g°(t, N, @, @), £(t,N, ®,®), are continuously differen-
tiable w.rt. (N.®,®) € (R*,S) ¥Vt € [to,ty]. If
(&*(1,N,No), &* (1, N,No)) = (&*(1), T*(t)) € S is
a closed-loop withoul memory Stackelberg equilibrium
such that (®°7(¢,N,Ny), ®(t,N,Ng)) is continu-
ously differentiable with respect to N € R"™, V ¢, t €
[to,t;] and {N*(t), t € [to,ts]} is the corresponding
state trajectory then 3 Po(t) : [to,t5] — R™, Y ¢, con-
tinuous and piecewise continuously differentiable vector
function such thal ¥ t € [to,t;]:

ty )
minimize / gt N (), ®2(¢), (1), (1), ¥P(1))dt
to

w.r.t. ), T(t), ®2(¢), @A (1), Q°(t))

(@2

N(1) = £(1,N(t), ®(¢), ¥(t)), N(io) = Ny

PP(t) = ~VpNH (I, N, ®(1, N, Ng), ¥(t, N, No). PA(1))

P(t;) =0

1y =0,
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O QL0 Y alsd), [sd]

3 say

oH? 5 g

[ 5'0)/(?@ s [sd)

OH

S - Q=0 Vid, [s]
Yisq

Sl + Y o) = 1.
#lsd]

Soq(h o3 q@) 20 ¥V alsd], [sd]

Youtaty =1, gty 20 VI[d, [s]
[.d]

d‘f[m]m + d’f[sd](?) =1

wlsd)

¢Jf[3L1]([)v oj[gd](l) >0 Voawfsd], [sd]

IV. CONCLUSIONS

In this paper, we examine the dynamic joint admis-
sion control, routing anc load sharing problem in ATM
networks with two hierarchical decision-makers. The
leader acts first minimizing his cost and knowing the
strategy of the follower. Then the follower reacts try-
ing to minimize his cost in the limits imposed by the
leader. First, we introduce a state space model of non-
linear differential equations that describe the dynamic
traffic flow in ATM networks. Then we formulate the
hierarchical dynamic joint problem using game theory.
Finally, we present the conditions for open and closed-
loop Stackelberg equilibrium.
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