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Summary: In todays heterogenous multimedia ATM networks, there are multiple
network managers, multiple traffic types and every user exploits the network resources
according to availability, performance and cost. Thus, there are many decision-makers
competing each other, and each one tries to achieve the best for his own good.

In order a decision-maker to take the best decisions, he should have accurate in-
formation about the network state. However, in todays high speed multimedia ATM
networks, the network state changes very fast and abruptly. Thus, a dynamic net-
work model should be considered in the analysis and optimization of these high speed
networks.

In this paper, we first model the dynamics of ATM networks using both the virtual
call and the cell processes in a two-level dynamic model. Then we provide a dynamic
game framework for the resource sharing problems in ATM networks with competing
traffic. Finally, we formulate the dynamic game problem both as a Nonlinear Comple-
mentarity Problem (NCP) and as a Variational Inequality Problem (VIP).

1. Introduction

With the increase demand for distributed real-time multimedia applications such
as video-on-demand, interactive TV, tele-education, tele-medicine, distributed virtual
reality games etc. there is the need for high speed networks. The ATM transport and
switching technique is widely viewed as the future technology for the new generation
of high speed broadband communication networks. In ATM networks, fixed length
packets, called cells (53 bytes), are transfered from node to node via very fast switch-
ing. Different traffic streams with wide range of characteristics are multiplexed and
transfered through the same ATM network. These multiple traffic classes have widely
different traffic patterns, performance constraints, modes of transport and synchro-
nization that impose new and complex communication requirements. Although there
is a lot of research on ATM networks, there are still many unanswered questions about
traffic management and resource sharing.

The state of an ATM network is continually changing due to topology changes and
real time traffic fluctuations. For efficient network control, the control decisions should
depend on the current network state. In this paper, we consider the dynamic resource
sharing problem and describe the dynamic evolution of the network state by a state
space model of nonlinear difference equations. We model the problem on the path flow
space and introduce two-level dynamic queueing models that describe the evolution
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of the average number of both virtual calls and cells in every resource for each traffic
type.

The usual approach for resource sharing problems in ATM networks is to minimize
a single global cost function assuming that all users cooperate in achieving it. In reality,
each user has different objective and quality of service constraints from the other users
and he competes with them for the shared network resources. So, each user tries to
minimize his own cost and satisfy his own constraints not caring for the performance
of the others. In this paper, we consider such competitive decision-makers who share
the same ATM network.

Previous studies taking a game theoretic approach to computer network resource
allocation problems consider the quasi-static flow control problem [1-15] and routing
problem [16-19] as a static Nash game and the dynamic resource sharing problem [20] as
a dynamic Nash game. In these studies, the decision-makers have equal power. When
one decision-maker has more power than the other a static Stackelberg game approach
is taken in [17, 21, 22] and a dynamic Stackelberg game in [17,23].

In this paper, we describe a control framework for dynamic traffic competition
in ATM networks. We formulate this dynamic non-cooperative problem both as a
Nonlinear Complementarity Problem and as a Variational Inequality Problem.

2. Dynamic Traffic Models

In broadband multimedia networks there are multiple decision-makers that share
the same network resources. The traffic streams of these decision-makers have large
variations and create bursts. In order to describe the dynamic evolution of the network
state, it is not sufficient to consider only the average number of cells. In this section,
we extend our work on modeling networks with virtual calls and cells [24,25] to the
dynamic game formulation of resource sharing problems. We consider both the average
number of virtual calls and the average number of cells per virtual call. So, we couple
the virtual call and cell processes in a combined two-level model. Furthermore, we
consider that the cell arrival and departure rates exhibit a drift from their average
values.

We assume that virtual calls of decision-maker c arrive at the source node [s.] and
requires processing in any computer node that has processing capabilities. Decision-
maker c should choose how many virtual calls to send to which destination node. So,
let him send a fraction ψc

[sd](t) ≥ 0 of these virtual calls for processing to node [.d] (Fig.
1). Of course, the sum of the load sharing fractions from node [s.] to all of its possible
destinations [.d] is equal to one:

∑

[.d]

ψc
[sd](t) = 1. Define the following vectors for the load

sharing fractions with their constraint sets: i) for decision-maker c: Ψc(t) ∈ LSc, ii)
for all other decision-makers excluding c: Ψc(t) ∈ LSc and iii) for all decision-makers:
Ψ(t) ∈ LS.

After deciding which fraction of these virtual calls will be processed by destination
node [.d], the decision-maker c should choose the route from the source [s.] to the
destination [.d]. Furthermore, he may decide to reject some virtual calls outside of
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the network, for congestion control reasons. So, let him reject a fraction φc
o[sd](t) ≥ 0

and route through path π[sd] a fraction φc
π[sd](t) ≥ 0 of his virtual calls for the source-

destination [sd] (Fig.2). Of course, all these fractions must sum to one: φc
o[sd](t) +

∑

π[sd]

φc
π[sd](t) = 1. Define the following vectors for the admission and routing fractions

with their constraint sets: i) for decision-maker c: Φc(t) ∈ ARc, ii) for all other
decision-makers excluding c: Φc(t) ∈ ARc and iii) for all decision-makers: Φ(t) ∈ AR.

The real network state is a discrete-state stochastic process. However, every decision-
maker cannot have instantaneous knowledge of the global state at every instant. So,
even if he solves the stochastic problem, it will be difficult to implement the solution.
Therefore, we propose using the deterministic approximation of this stochastic process
by its expected value. We describe the network state by the average number of vir-
tual calls as well as the average number of cells of all decision-makers at all network
resources.

Let virtual calls of decision-maker c arrive at a resource with rate γc(t) (Poisson
distribution) and have mean duration 1/δc(t) (general distribution). The average num-
ber of virtual calls of decision-maker c at this resource, V c(t), increases by the average
number of virtual calls that arrive and decreases by the average number of virtual calls
that depart during a time interval. Since, thousands of virtual call can coexist simulta-
neously at the resource, the virtual call departure rate is δc(t)V c(t). In ATM networks,
traffic fluctuates with a large variance around its average value. Therefore, we also
introduce a stochastic drift for the arrival and departure rates. Thus, the following
differential equation describes the dynamic evolution of the average number of virtual
calls of decision-maker c at a resource:

V̇ c(t) =

(

γc(t) − ηc(t) ∗
dwc

η

dt

)

−

(

δc(t)V c(t) − θc(t) ∗
dwc

θ

dt

)

where ηc(t) and θc(t) are the standard deviations of the arrival and departure rates
for traffic c, and wc

η(t), w
c
θ(t) are Wiener processes.

Each virtual call carries cells. Let cells of decision-maker c arrive at rate rc(t)
(Poisson distribution) at their corresponding virtual call. The length of every cell is
1/µ (=53 Bytes for ATM networks) and the service rate at the resource is C(t). Then
the average number of cells of decision-maker c at this resource, N c(t), increases by the
average number of cells that arrive and decreases by the average number of cells that
depart during a time interval. Again, we introduce a stochastic drift for the arrival
and departure rates. Thus, the following differential equation describes the dynamic
evolution of the average number of cells of decision-maker c at a resource:

Ṅ c(t) =

(

rc(t)V c(t) − ac(t) ∗
dwc

a

dt

)

−

(

µC(t)ρc(t) − bc(t) ∗
dwc

b

dt

)

where ρc(t) is the instantaneous utilization for traffic c at this resource, ac(t) and
bc(t) are the standard deviations of the arrival and departure rates for traffic c, and
wc

a(t), w
c
b(t) are Wiener processes.

Taking into account the previous ideas, we extend the dynamic models of [17,20]
to the following models:
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Ṅ c(t) =

(

rc(t)V c(t) − ac(t) ∗
dwc

a

dt

)

−

(

µC(t) ∗
2N c(t)

2 − x2 ∗ µ2
∗

∗

1 − x2 ∗ µ2 −
∑

k

Nk(t) +

√

√

√

√

(

1 +
∑

k

Nk(t)

)2

− 2
∑

k

Nk(t) ∗ (2 − x2 ∗ µ2)

1 −
∑

k

Nk(t) +

√

√

√

√

(

1 +
∑

k

Nk(t)

)2

− 2
∑

k

Nk(t) ∗ (2 − x2 ∗ µ2)

−bc(t) ∗
dwc

b

dt

)

For exponential service, general service with Processor Sharing (P.S.) discipline and
deterministic service times, the above model gives the following dynamic models:

Ṅ c(t) =

(

rc(t)V c(t) − ac(t) ∗
dwc

a

dt

)

−









µC(t) ∗
N c(t)

1 +
∑

k

Nk(t)
− bc(t) ∗

dwc
b

dt









Ṅ c(t) =

(

rc(t)V c(t) − ac(t) ∗
dwc

a

dt

)

−









µC(t) ∗
vc ∗N c(t)

1 +
∑

k

vk ∗Nk(t)
− bc(t) ∗

dwc
b

dt









Ṅ c(t) =

(

rc(t)V c(t) − ac(t) ∗
dwc

a

dt

)

−

















µC(t) ∗ 2N c(t) ∗

−
∑

k

Nk(t) +

√

√

√

√1 +

(

∑

k

Nk(t)

)2

1 −
∑

k

Nk(t) +

√

√

√

√1 +

(

∑

k

Nk(t)

)2
− bc(t) ∗

dwc
b

dt

















We can rewrite the above model using the zero mean, unit variance normal random

variables ξc
a(t) =

dwc
a(t)

dt
and ξc

b(t) =
dwc

b(t)

dt
. For example, the M/D/1 dynamic model

becomes:

Ṅ c(t) = (rc(t)V c(t) − ac(t) ∗ ξc
a(t))

−

















µC(t) ∗ 2N c(t) ∗

−
∑

k

Nk(t) +

√

√

√

√1 +

(

∑

k

Nk(t)

)2

1 −
∑

k

Nk(t) +

√

√

√

√1 +

(

∑

k

Nk(t)

)2
− bc(t) ∗ ξc

b(t)
















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Taking all these differential equations for the average number of virtual calls and
the average number of cells of all decision-makers at all network resources, we have the
dynamic evolution of the network state:

Ẋ(t) = Λ(t,X(t),Φ(t),Ψ(t)) − D(t,X(t))

where X(t) ≥ 0 is the vector network state, Λ(t,X(t),Φ(t),Ψ(t)) ≥ 0 is the vector
arrival rate and D(t,X(t)) ≥ 0 is the vector departure rate at time t.

Rewritting the above differential vector equation as a vector differential function,
we have

Ẋ(t) = f(t,X(t),Φ(t),Ψ(t))

Let [Φc,Ψc] and [Φ,Ψ], be the strategy of decision-maker c and of all decision-
makers, respectively, during the whole duration of the problem. The decision-maker c
has instantaneous at time t cost function, gc(t,N(t),Φ(t),Ψ(t)), and total cost function
during the whole duration of the problem, from the initial time t0 to the final time tf :

J c(Φ,Ψ) =
∫ tf

t0

gc(t,X(t),Φ(t),Ψ(t))dt

For the infinite horizon problem, he has the following cost function

J c(Φ,Ψ) =
∫

∞

t0

e−ktgc(t,X(t),Φ(t),Ψ(t))dt

where k is a discount cost.
Examples of his cost are: i) the sum of his average cost (eg. delay) at every network

resource minus his benefit (eg. throughput) from using the network, ii) the maximum
penalty (eg. blocking probability) minus the minimum reward at any network resource.
Here, we examine the most general case where the cost function at a resource may
depend on the traffic over the whole network. Desired properties of a cost function are
to be nonnegative, bounded from above, nondecreasing, continuous, differentiable and
convex ∀X(t) ≥ 0.

Let also define the Hamiltonian for the decision-maker c to be:

Hc(t,X,Φ,Ψ,Pc) = gc(t,X,Φ,Ψ) + Pc ∗ f(t,N,Φ,Ψ)

where Pc: vector of costate variables associated with the state equations.

Let also the Lagrangian for the decision-maker c be:

Lc(t,X,Φ,Ψ,Pc,Qc) = Hc(t,X,Φ,Ψ,Pc) +
∑

[s.]

Qc
[s.] ∗



1 −
∑

[.d]

ψc
[sd]





+
∑

[sd]

Qc
[sd] ∗



1 − φc
o[sd] −

∑

π[sd]

φc
π[sd]




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with φc
o[sd], φ

c
π[sd], ψ

c
[sd] ≥ 0 ∀ π[sd], [sd], c,

where Qc = [... Qc
[sd] ... Q

c
[s.] ...] : vector of the multipliers associated with the

constraints of the admission, routing and load sharing fractions.

In the next sections, we consider that the multiple decision-makers compete for
the limited network resources and try to use the resources of the network for their
own benefit, ignoring the penalty they cause to the other decision-makers. When
the decision-makers are in equilibrium, no decision-maker can improve his cost by
altering his decision unilaterally [26,27,28]. We express the non-cooperative equilibrium
conditions both as a Nonlinear Complementarity Problem (NCP) and as a Variational
Inequality Problem (VIP). The proofs of the Theorems follow a similar approach as in
[17,19] and therefore they are ommitted.

3. Nonlinear Complementarity Problem (NCP)

In this section, we formulate the dynamic non-cooperative load sharing, routing
and admission control problem as a Nonlinear Complementarity Problem (NCP).

Let define the vector of the admission control, routing and load sharing fractions
and of the Lagrange multipliers:

Z(t) =
[

... φc
o[sd](t) ... φ

c
π[sd] ... Q

c
[sd](t) .... ψ

c
[sd](t) ... Q

c
[s.](t) ...]

T

and the vector of the derivatives of the Lagrangian with respect to the admission
control, routing and load sharing fractions as well as the Lagrange multipliers:

∇L(Z(t)) =



...





∂Hc

∂φc
o[sd]

−Qc
o[sd](t)



 ...





∂Hc

∂φc
π[sd]

−Qc
π[sd](t)



 ...

...





1 − φc
o[sd](t) −

∑

π[sd]∈Π
c
[sd]

φc
π[sd](t)





 ...

...







∂Hc

∂ψc
[sd]

−Qc
[s.](t)



 ...





1 −
∑

[.d]∈D
c
[s.]

ψc
[sd](t)





 ...







Theorem 1:
Consider the dynamic joint load sharing, routing and admission control problem in

networks with multiple competing decision-makers, with fixed initial time t0 and final

time tf . If for each decision-maker c, gc is differentiable and convex in (Φc(t),Ψc(t)) ∈
(ARc,LSc), for each fixed value of (Φc(t),Ψc(t)) ∈ (ARc,LSc) then (Φ∗(t),Ψ∗(t))
∈ (AR,LS) is a Nash equilibrium if and only if it solves the following Nonlinear
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Complementarity Problem ∀ t ∈ [t0, tf ]:

∇L(Z∗(t)) ∗ Z∗(t) = 0
∇L(Z∗(t)) ≥ 0
Z∗(t) ≥ 0

with Ẋ∗(t) = f(t,X∗(t),Φ∗(t),Ψ∗(t))
X∗(t0) = X0

Ṗc(t) = −∇XH
c(t,X∗,Φ∗(t),Ψ∗(t),Pc(t)) ∀ c

Pc(tf ) = 0 ∀ c

4. Variational Inequality Problem (VIP)

In this section, we formulate the dynamic non-cooperative load sharing, routing
and admission control problem as a Variational Inequality Problem (VIP).

Let define the vector of derivatives of the Hamiltonian with respect to the admission
control, routing and load sharing fractions:

∇H(t,X(t),Φ(t),Ψ(t),P(t)) =





...
∂Hc

∂φc
o[sd]

...
∑

π[sd]∈Π
c
[sd]

∂Hc

∂φc
π[sd]

...
∂Hc

∂ψc
[sd]

...







Theorem 2:
Consider the dynamic joint load sharing, routing and admission control problem in

networks with multiple competing decision-makers, with fixed initial time t0 and final

time tf . Let for each decision-maker c, gc(t,X,Φ,Ψ), f(t,X,Φ,Ψ), be continuously

differentiable with respect to (X,Φ,Ψ) ∈ (Rn,Φ,Ψ) ∀ t ∈ [t0, tf ]. If Hc is continuously

differentiable and convex in (X,Φc,Ψc) ∈ (Rn,ARc,LSc), ∀ t ∈ [t0, tf ], for each

fixed value of (Φc(t),Ψc(t)) ∈ (ACc,LSc), then (Φ∗(t),Ψ∗(t)) ∈ (AR,LS) is a Nash

equilibrium if and only if it solves the following Variational Inequality Problem ∀ t ∈
[t0, tf ]:

∇H(t,X∗(t),Φ∗(t),Ψ∗(t),P(t)) ∗ ((Φ,Ψ) − (Φ∗(t),Ψ∗(t))) ≥ 0
∀ (Φ,Ψ) ∈ (AR,LS)

with Ẋ∗(t) = f(t,X∗(t),Φ∗(t),Ψ∗(t))
X∗(t0) = X0

Ṗc(t) = −∇XH
c(t,X∗,Φ∗(t),Ψ∗(t),Pc(t)) ∀ c

Pc(tf ) = 0 ∀ c

Another equivalent VIP formulation is given in the following Theorem:

Theorem 3:
Consider the dynamic joint load sharing, routing and admission control problem in

networks with multiple competing decision-makers, with fixed initial time t0 and final

time tf . Let for each decision-maker c, gc(t,X,Φ,Ψ), f(t,X,Φ,Ψ), be continuously
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differentiable with respect to (X,Φ,Ψ) ∈ (Rn,Φ,Ψ) ∀ t ∈ [t0, tf ]. If Hc is continuously

differentiable and convex in (X,Φc,Ψc) ∈ (Rn,ARc,LSc), ∀ t ∈ [t0, tf ], for each

fixed value of (Φc(t),Ψc(t)) ∈ (ARc,LSc), then (Φ∗(t),Ψ∗(t)) ∈ (AR,LS) is a Nash

equilibrium if and only if it solves the following Variational Inequality Problem ∀ t ∈
[t0, tf ]:

∇L(Z(t)∗) ∗ (Z − Z(t)∗) ≥ 0 ∀ Z ≥ 0

with Ẋ∗(t) = f(t,X∗(t),Φ∗(t),Ψ∗(t))
X∗(t0) = X0

Ṗc(t) = −∇XH
c(t,X∗,Φ∗(t),Ψ∗(t),Pc(t)) ∀ c

Pc(tf ) = 0 ∀ c

5. CONCLUSIONS

Load sharing, routing and admission control are fundamental problems in computer
networks. We consider all these problems simultaneously in ATM networks with mul-
tiple decision-makers. Every decision-maker assigns his virtual calls for processing to
destination processors in such a way as to optimize his own performance. At the same
time, he routes them to the selected destinations through the best paths for his own
performance. Every decision-maker is in competition with the other decision-makers
for the shared network resources. We introduce a two-level dynamic queueing model
to describe the dynamic evolution of the average number of both virtual calls and cells
at every network resource. Then, we formulate the dynamic problem as a dynamic
Nash game and give the non-cooperative equilibrium conditions both as a Nonlinear
Complementarity Problem and as a Variational Inequality Problem.

Extensions of this work would be to solution of the dynamic problem as a stochastic
optimal control problem, with state constraints, with delayed information about the
network state, and with imperfect state observation.
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