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Abstract: In this paper, we develop a methodology for dynamic resource sharing in
multimedia networks with competing traffic types. We introduce dynamic queueing models
for multimedia traffic types, as well as approximate linearized dynamic queueing models.

We formulate the problem as an dynamic non-cooperative Nash game and state the
conditions for non-cooperative equilibrium. Finally, we propose load sharing, routing and
admission control algorithms, which state that each traffic type should be allocated only
on paths and destinations that minimize its Hamiltonian.
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1. INTRODUCTION

The integration of broadband communication networks, high performance comput-
ers, interactive TV, multimedia applications and consumer electronics is changing the
way we interact. Advances in multimedia and networking technologies have fueled the
rapid development of multimedia applications over broadband networks. Multimedia ap-
plications such as tele-education & tele-training, digital libraries, Internet multimedia re-
source discovery & retrieval, tele-working, distributed cooperative work, multimedia tele-
conferencing & mail, virtual reality tele-simulations, virtual community, multiplayer video
games, interactive TV, video-on-demand, audio-on-demand, tele-shopping, tele-banking,
tele-diagnosing & tele-medicine, tele-publishing, news-on-demand e.t.c. are driving the
need to support a wide variety of advanced services over high speed broadband networks.

These distributed multimedia applications impose new traffic requirements on net-
working. In multimedia networks there are many traffic types that require processing and
communication. These multiple traffic types have different traffic characteristics, service
requirements, performance objectives and constraints.

The state of a real network is continually changing due to topology changes and real
time traffic fluctuations. Therefore, the control decisions should depend on the current
network state. In this paper, we consider the dynamic resource sharing problem and
describe the dynamic evolution of the network state by a state space model of nonlinear
difference equations. We model the problem on the path flow space and introduce dynamic

1The methodology proposed in this paper was first presented in A.A. Economides, ”A Unified Game-

Theoretic Methodology for the Joint Load Sharing, Routing and Congestion Control Problem”, Ph.D. Dis-

sertation, University of Southern California, Los Angeles, August 1990.
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queueing models for the number of packets both in the queue and in the system (queue
plus service) for multimedia traffic types. These dynamic queueing models describe the
evolution of the average number of packets in every resource for each traffic type. Further-
more, we introduce approximate linearized dynamic queueing models, in order to have a
linear-quadratic problem for which there is extensive literature.

The usual approach to network design and control is the minimization of a single global
cost function, possibly a combination of multiple objectives. Thus, it is assumed that all
users in the network cooperate for the socially optimum, such as optimizing the average
packet delay. Furthermore, previous research is primarily concentrated on networks with
a single traffic type. However, in a real multimedia network, there is a diversity of users
and traffic types, each with possibly different objectives and different quality of service
requirements. The different decision-makers compete for the limited common resources
of the network in order to optimize their own objectives, not caring for the penalty they
cause to the others. For example, different telecommunication companies may share the
same communication links and one of them may want to maximize its packet throughput,
another may want to minimize its packet delay and a third may want to minimize its packet
blocking probability. Thus, each company is seeking to optimize its own performance in
competition to the other companies. In this paper, we consider the resource sharing
problem in a multimedia network with multiple competitive decision-makers.

Previous studies taking a game theoretic approach to computer network resource allo-
cation problems consider the quasi-static flow control problem [1-15] and routing problem
[16-19] as a static Nash game. On the other hand, when the decision-makers have differ-
ent rights and power, we formulated the joint load sharing, routing and admission control
problem [17, 20, 21] as a static Stackelberg game. Furthermore, we considered the dynamic
case of the problem and formulated it [17,22] as a dynamic Stackelberg game.

In this paper, we consider the dynamic resource sharing problem in multimedia net-
works with multiple competing traffic types and multiple objectives. We formulate the
dynamic problem as a dynamic non-cooperative Nash game and derive the non-cooperative
equilibrium conditions. Then we propose load sharing, admission and routing algorithms
for each traffic type. Externally arriving traffic at a source is assigned to the destination
for which the first derivative of its Hamiltonian with respect to (w.r.t.) its corresponding
load sharing fraction is minimum. However, this traffic may be rejected if the first deriva-
tive of its Hamiltonian w.r.t. its admission fraction is less than the first derivative of its
Hamiltonian w.r.t. its routing fractions to any path to its destination. If it is accepted,
then it is routed to its destination via the path that has the minimum first derivative of
its Hamiltonian w.r.t. its corresponding routing fraction.

2. DYNAMIC MODELS FOR MULTIMEDIA NETWORKS

In this section, we model the dynamic resource sharing problem in multimedia networks
with competing traffic types. We also introduce dynamic queueing models to describe the
dynamic evolution of the network state. The general structure of these dynamic models
is based on the idea that the number of packets in a resource increases by the number of
packet arrivals to and decreases by the number of packet departures from that resource
during a time interval.

Traffic type c, requiring processing anywhere in the network, arrives at the source
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node [s.] with instantaneous at time t external arrival rate γc
[s.](t,N(t)) ≥ 0. Note, that

the external arrival rate depends on the total traffic currently in the network (N(t) ≥ 0:
vector of the average number of packets at all network resources). This means that when
the traffic in the network is heavy, some users may be discouraged from submitting traffic
into the network and possibly postpone it for later. On the other hand, when the network
is lightly loaded, this may motivate some users in using the network. A load sharing
decision is made as to where this traffic will be processed. Let ψc

[sd](t) ≥ 0 be the fraction

of this traffic sent for processing to node [.d]. Since only one destination node is selected,
the sum of the load sharing fractions from node [s.] to all of its possible destinations [.d]
is equal to one:

∑

[.d]

ψc
[sd](t) = 1. Let LSc be the load sharing constraint set for traffic type

c, which includes all these fractions with their constraints for all sources.
Since packets arrive at the source node [s.] with external arrival rate γc

[s.](t,N(t)), then

the traffic from source node [s.], transferred for processing to the destination node [.d],
will be γc

[s.](t,N(t)) ∗ ψc
[sd](t).

Therefore, the instantaneous at time t total traffic type c that is transferred for pro-
cessing to the destination node [.d], due to load sharing is:

λc
[.d](t) =

∑

[s.]

γc
[s.](t,N(t)) ∗ ψc

[sd](t)

After deciding which fraction of the traffic will be processed by destination node [.d],
it should be transferred there through a route. For routing, we must specify which path
between source-destination [sd] will be selected. In addition, some packets may be rejected
outside of the network, for congestion control reasons. So, let the fraction of rejected traffic
for the source-destination [sd] be φc

o[sd](t) ≥ 0, and the fraction of traffic routed through

path π[sd] be φc
π[sd](t) ≥ 0. Since the traffic for the source-destination [sd] may only

be rejected or routed through a path, all these fractions must sum to one: φc
o[sd](t) +

∑

π[sd]

φc
π[sd](t) = 1. Let ARc be the admission and routing constraint set for traffic type c,

which includes all these fractions with their constraints for all source-destinations.
Furthermore, traffic arrives at the source node [s.] and requires only transfer to the

destination node [.d] (i.e. no processing), with instantaneous at time t external arrival rate
γc

[sd](t,N(t)) ≥ 0. Again, this external arrival rate depends on the total traffic currently in

the network. Since there is traffic γc
[s.](t,N(t))∗ψc

[sd](t) (due to load sharing decisions) and

traffic γc
[sd](t,N(t)) (due to communication requirements) for the source-destination [sd],

the total traffic type c for the source-destination [sd] is γc
[sd](t,N(t))+γc

[s.](t,N(t))∗ψc
[sd](t).

Due to the admission control, the fraction of this traffic that will be rejected is φc
o[sd](t).

So, let the instantaneous at time t rejected traffic for the source-destination [sd] be

λc
o[sd](t) = (γc

[sd](t,N(t)) + γc
[s.](t,N(t)) ∗ ψc

[sd](t)) ∗ φ
c
o[sd](t)

Another fraction φc
π[sd](t) of this traffic will be routed through path π[sd]. Therefore,

the resulting traffic on path π[sd] will be (γc
[sd](t,N(t)) + γc

[s.](t,N(t)) ∗ψc
[sd](t)) ∗ φ

c
π[sd](t).

This traffic will be assigned to the links and nodes that constitute this path. So, the
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instantaneous at time t incoming traffic type c on link ij will be the sum of all path traffic
type c that traverse this link :

λc
ij(t) =

∑

[sd]

∑

π[sd]

(γc
[sd](t,N(t)) + γc

[s.](t,N(t)) ∗ ψc
[sd](t)) ∗ φ

c
π[sd](t) ∗ 1ij∈π[sd](t)

where 1ij∈π[sd](t) is the indicator function that link ij is on the path π[sd].
Similarly, the instantaneous at time t incoming traffic type c at node i will be the sum

of all path traffic type c that traverse this node :

λc
i (t) =

∑

[sd]

∑

π[sd]

(γc
[sd](t,N(t)) + γc

[s.](t,N(t)) ∗ ψc
[sd](t)) ∗ φ

c
π[sd](t) ∗ 1i∈π[sd](t)

Next, we describe the dynamic evolution of the network state using a state space model
for each network resource. The real network state is a discrete-state stochastic process.
However, the decision makers cannot have instantaneous knowledge of the global state at
every instant. So, even if we solve the stochastic problem, it will be difficult to implement
the solution. Therefore, we use the deterministic approximation of this stochastic process
by its expected value. We define as state of a network resource, the average number of
packets of all traffic types at this resource (non-negative continuous-state continuous-time
process). Note, that we may also describe the network state in a more detailed way using
for example both the packet and the call processes at each resource [17,23,24]. The average
number of packets at a resource increases during a time interval by the average number of
packets that arrive during this time interval and decreases by the average number of packets
that depart during this interval. So, let N c

ij(t) ≥ 0 be the average number of traffic type c
packets at resource ij at time t and λc

ij(t,N(t),Φc(t),Ψc(t)) ≥ 0 be the instantaneous at
time t incoming traffic (arrival rate) type c at resource ij. The service scheduling employed
by the resource ij and the service requirement distributions of the various traffic type
packets determine this instantaneous at time t outcoming traffic (departure rate) type c
at resource ij, dc

ij(t,Nij(t)) ≥ 0, which is a function of the average number of packets of

all traffic types at the resource ij, Nij(t) = [N1
ij(t), ..., N

c
ij(t), ..., N

C
ij (t)], with dc

ij(t,0) = 0.
Then we can write

Ṅ c
ij(t) = λc

ij(t,N(t),Φc(t),Ψc(t)) − dc
ij(t,Nij(t))

For the whole network, let N(t) ≥ 0 be the vector network state, Λ(t,N(t),Φ(t),Ψ(t)) ≥
0 be the vector arrival rate and D(t,N(t)) ≥ 0 be the vector departure rate at time t, we
can write

Ṅ(t) = Λ(t,N(t),Φ(t),Ψ(t)) − D(t,N(t))

Note again that in this general model, the arrival rate depends on the traffic already
in the network. Under specific assumptions on the network operation and the traffic dis-
tributions, the above abstract form of the state space model reduces to specific differential
equations. The arrival rate and the departure rate from a resource should be nonnegative,
nondecreasing, continuous and differential functions of the number of packets there. It
is also desirable, the arrival rate to be a convex function, while the departure rate to be
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a concave function of the number of packets there. We can write such differential equa-
tions for each traffic type c at each network resource. Then, a differential vector equation
describes the dynamic network evolution

Ṅ(t) = f(t,N(t),Φ(t),Ψ(t))

In the next paragraphs, we introduce dynamic models for multimedia traffic. In these
models, the arrival rate at a resource is independent of the current traffic in the resource.
We encourage research on deriving dynamic queueing models with arrival rates depending
on the number of packets currently in the queue or in the system.

2.1. Dynamic M/G/1 Queueing Models

Here, we introduce dynamic queueing models for multiple class M/G/1 queues. Let
packets with mean service requirement 1/µ and second moment of service requirement x2

arrive with Poisson distribution at a resource with service rate at time t, C(t). Then, the
average number of class c packets in M/G/1 queues is given by

N c = ρc + ρc ∗
ρ ∗ x2 ∗ µ2

2(1 − ρ)
∀ c

where ρc is the utilization for class c and ρ =
∑

c ρ
c is the overall utilization.

Solving the above system of equations for ρc, we have the utilization for class c as a
function of the average number of packets for each class:

ρc =

2N c ∗






1 − x2 ∗ µ2 −

∑

k

Nk +

√

√

√

√

(

1 +
∑

k

Nk

)2

− 2
∑

k

Nk ∗ (2 − x2 ∗ µ2)







(2 − x2 ∗ µ2) ∗






1 −

∑

k

Nk +

√

√

√

√

(

1 +
∑

k

Nk

)2

− 2
∑

k

Nk ∗ (2 − x2 ∗ µ2)







Then we propose the following dynamic model for multiple class M/G/1 queues [17]:

Ṅ c(t) = λc(t) − µC(t) ∗
2N c(t)

2 − x2 ∗ µ2
∗

∗






1 − x2 ∗ µ2 −

∑

k

Nk(t) +

√

√

√

√

(

1 +
∑

k

Nk(t)

)2

− 2
∑

k

Nk(t) ∗ (2 − x2 ∗ µ2)












1 −

∑

k

Nk(t) +

√

√

√

√

(

1 +
∑

k

Nk(t)

)2

− 2
∑

k

Nk(t) ∗ (2 − x2 ∗ µ2)







For exponential service, general service with Processor Sharing (P.S.) discipline and
deterministic service times, the above model gives the following dynamic models:
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Ṅ c(t) = λc(t) − µC(t) ∗
N c(t)

1 +
∑

k

Nk(t)
M/M/1

Ṅ c(t) = λc(t) − µC(t) ∗
wc ∗N c(t)

1 +
∑

k

wk ∗Nk(t)
class discriminating P.S.

Ṅ c(t) = λc(t) − µC(t) ∗

2N c(t) ∗



−
∑

k

Nk(t) +

√

√

√

√1 +

(

∑

k

Nk(t)

)2




1 −
∑

k

Nk(t) +

√

√

√

√1 +

(

∑

k

Nk(t)

)2
M/D/1

Also, for multiple class M/M/∞ queues we have the following dynamic model:

Ṅ c(t) = λc(t) − µcC(t) ∗N c(t) M/M/∞

Considering other more complicated queueing models, one may derive dynamic queue-
ing models for other cases.

2.2. Dynamic Queueing Models for the Packets in Queue

In future high speed networks, we will have information only about the average number
of packets in the queue (not both in the queue and in service), due to the enormous
number of packets that will be in transit into the network. Therefore, it is also useful
to have dynamic queueing models for the average number of packets in the queue. Here,
we present the methodology of deriving such models for the case of multiple class M/G/1
queues. We encourage research on more complicated queueing models with multiple servers
and queues, various arrival distributions, service scheduling e.t.c. The average number of
class c packets in queue for a multiple class M/G/1 queue is given by

N c
Q = ρc ∗

ρ ∗ x2 ∗ µ2

2(1 − ρ)
∀ c

Solving the above system of equations, we have the utilization for class c, ρc, as a
function of the average number of packets in queue for all classes

ρc =

2N c
Q ∗



x2 ∗ µ2 +
∑

k

Nk
Q −

√

√

√

√

(

∑

k

Nk
Q

)2

+ 2
∑

k

NQ ∗ x2 ∗ µ2





x2 ∗ µ2 ∗



−
∑

k

Nk
Q +

√

√

√

√

(

∑

k

Nk
Q

)2

+ 2
∑

k

NQ ∗ x2 ∗ µ2
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Then we propose the following dynamic model for multiple class M/G/1 queues [17]:

Ṅ c
Q(t) = λc(t) − µC(t) ∗

2N c
Q(t)

x2 ∗ µ2
∗

∗

x2 ∗ µ2 +
∑

k

Nk
Q −

√

√

√

√

(

∑

k

Nk
Q

)2

+ 2
∑

k

NQ ∗ x2 ∗ µ2

−
∑

k

Nk
Q +

√

√

√

√

(

∑

k

Nk
Q

)2

+ 2
∑

k

NQ ∗ x2 ∗ µ2

For exponential service, general service with Processor Sharing (P.S.) discipline and
deterministic service time, the above model gives the following dynamic models:

Ṅ c
Q(t) = λc(t) − µC(t) ∗N c

Q(t)∗

∗

2 +
∑

k

Nk
Q −

√

√

√

√

(

∑

k

Nk
Q

)2

+ 4
∑

k

NQ

−
∑

k

Nk
Q +

√

√

√

√

(

∑

k

Nk
Q

)2

+ 4
∑

k

NQ

M/M/1 or P.S.

Ṅ c
Q(t) = λc(t) − µC(t) ∗ 2N c

Q(t)∗

∗

1 +
∑

k

Nk
Q −

√

√

√

√

(

∑

k

Nk
Q

)2

+ 2
∑

k

NQ

−
∑

k

Nk
Q +

√

√

√

√

(

∑

k

Nk
Q

)2

+ 2
∑

k

NQ

M/D/1

Note that for single class, we have:

ṄQ(t) = λ(t) − µC(t) ∗
−NQ(t) +

√

(NQ)2 + 2NQ ∗ x2 ∗ µ2

x2 ∗ µ2
M/G/1

ṄQ(t) = λ(t) − µC(t) ∗
−NQ(t) +

√

(NQ)2 + 4NQ

2
M/M/1 or P.S.

ṄQ(t) = λ(t) − µC(t) ∗

(

−NQ(t) +
√

(NQ)2 + 2NQ

)

M/D/1

2.3. Linearized Dynamic Queueing Models
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Although the dynamic queueing models describe accurately the dynamic behavior of
the queue, they depend nonlinearly on the average number of packets in the system (except
the M/M/∞ model). Therefore the analytical solution of the dynamic optimization prob-
lem usually becomes intractable. Next, we propose the linearization of dynamic queueing
models, that gives simpler models. For example, the linearized multiple class M/M/1
queueing model is the following:

Ṅ c(t) = λc(t) − µC ∗
N c(t)

1 +
∑

k

Nk(t)

≈ λc(t) − µC ∗
N c

1 +
∑

k

Nk
− µC ∗

∑

k

∂

∂Nk









N c

1 +
∑

k

Nk









∗ (Nk(t) −Nk)

≈ λc(t) − µC ∗
N c

1 +
∑

k

Nk
− µC ∗

1 +
∑

k 6=c

Nk

(

1 +
∑

k

Nk

)2 ∗ (N c(t) −N c)

+µC ∗
∑

k

N c

(

1 +
∑

n

Nn

)2 ∗ (Nk(t) −Nk)
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≈ λc(t) − µC ∗

λc

µC −
∑

k

λk

1 +

∑

k

λk

µC −
∑

k

λk

−µC ∗
1

1 +

∑

k

λk

µC −
∑

k

λk

∗









N c(t) −
λc

µC −
∑

k

λk









+µC ∗
λc

µC
∑

n

λn
∗
∑

k

1








1 +

∑

n

λn

µC −
∑

n

λn









2 ∗









Nk(t) −
λk

µC −
∑

n

λn









Finally, we have the following linearized model for multi-class M/M/1 queues [17]:

Ṅ c(t) ≈ λc(t) − λc ∗

∑

k

λk

µC
− (µC −

∑

k

λk) ∗N c(t) +

λc ∗ µC −
∑

n

λn

µC
∗
∑

k

Nk(t)

The above model satisfies the steady-state flow conservation

λc − λc ∗

∑

k

λk

µC
= (µC −

∑

k

λk) ∗N c −

λc ∗ µC −
∑

n

λn

µC
∗
∑

k

Nk ⇔ N c =
λc

µC −
∑

k

λk

Similarly, we may derive dynamic models for the average number of packets in the
system (queue plus service), or in the queue for other queueing models. We encourage
research on queues with general arrival and service distributions, multiple queues, various
service policies e.t.c.
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Another approximate model for multiple class M/M/1 queues is the following [17]:

Ṅ c(t) = λc(t) − µC ∗
N c(t)

1 +
∑

k

Nk(t)

≈ λc(t) − µC ∗
1

1 +
∑

k

Nk
∗N c(t)

≈ λc(t) − µC ∗
1

1 +

∑

k

λk

µC −
∑

k

λk

∗N c(t)

≈ λc(t) − (µC −
∑

k

λk) ∗N c(t)

The above model also satisfies the steady-state flow conservation

λc = (µC −
∑

k

λk) ∗N c ⇔ N c =
λ

µC −
∑

k

λk

For this particular model, the inverse of the first derivative of the departure rate with
respect to the average number of packets becomes:

[

∂

∂N c

(

(µC −
∑

k

λk) ∗N c

)]−1

=
1

µC −
∑

k

λk
=

1

µC

1−
∑

k

λk

µC

=

1

µC

1 −

∑

k

Nk

1 +
∑

k

Nk

=

1 +
∑

k

Nk

µC

This result explains why the shortest route routing achieves good performance [17].
After the model linearization, the system state is described by the following state

equation

Ṅ = A ∗ N + B ∗ (Φ,Ψ) N0 : given
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with cost function
∫ tf

t0

1

2
∗ (NT ∗ S ∗ N + (Φ,Ψ)T ∗ R ∗ (Φ,Ψ))dt

where A,B,S,R are suitable matrices. Thus, we can use results from the optimal
control theory on linear-quadratic problems, to solve the resource sharing problem.

2.4. Cost Functions

In this section, we introduce cost functions that can be used in the dynamic problem.
Let [Φc,Ψc] and [Φ,Ψ], be the strategy of traffic type c and of all traffic types, respectively,
during the whole duration of the problem. Define the instantaneous at time t cost function
for traffic type c to be gc(t,N(t),Φ(t),Ψ(t)), and the total cost function during the whole
duration of the problem, from the initial time t0 to the final time tf , becomes

Jc(Φ,Ψ) =

∫ tf

t0

gc(t,N(t),Φ(t),Ψ(t))dt

For the infinite horizon problem, we consider the following cost function

Jc(Φ,Ψ) =

∫ ∞

t0

e−ktgc(t,N(t),Φ(t),Ψ(t))dt

where k is a discount cost.
We can decompose this cost as the sum of its average cost at every network resource mi-

nus its benefit from operating the network. Here, we examine the most general case where
the cost function at a resource may depend on the traffic over the whole network. Desired
properties of a cost function are to be nonnegative, bounded from above, nondecreasing,
continuous, differentiable and convex ∀N c

i (t) ≥ 0.

In the optimization problem, we shall use the Hamiltonian and Lagrangian functions.
Let the Hamiltonian for the traffic type c be:

Hc(t,N,Φ,Ψ,Pc) = gc(t,N,Φ,Ψ) + Pc ∗ f(t,N,Φ,Ψ)

where Pc = [... P c,k
ij ... P c,k

i ... P c,k
o[sd] ... P

c,k
[.d] ...] : vector of costate variables associated

with the state equations.

Let also the Lagrangian for the traffic type c be:

Lc(t,N,Φ,Ψ,Pc,Qc) = Hc(t,N,Φ,Ψ,Pc) +
∑

[s.]

Qc
[s.] ∗



1 −
∑

[.d]

ψc
[sd]





+
∑

[sd]

Qc
[sd] ∗



1 − φc
o[sd] −

∑

π[sd]

φc
π[sd]





with φc
o[sd], φ

c
π[sd], ψ

c
[sd] ≥ 0 ∀ π[sd], [sd], c,
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where Qc = [... Qc
[sd] ... Q

c
[s.] ...] : vector of the multipliers associated with the con-

straints of the admission, routing and load sharing fractions.

3. NON-COOPERATIVE EQUILIBRIUM SOLUTION

In this section, we formulate the dynamic resource sharing problem on the path flow
space as a dynamic non-cooperative Nash game among competing traffic types.

Packets of each traffic type try to use the resources of the multimedia network for
their own benefit, ignoring the inconvenience that they cause to packets from other traffic
types. Since the behavior of each traffic type is similar to that of any other traffic type,
i.e. to operate optimally for its packets, next we consider packets only from traffic type c,
and the effect of packets from other traffic types on them. When the traffic types are in
equilibrium, no traffic type can decrease its cost by altering its decision unilaterally.

Theorem 1:
Consider the dynamic resource sharing problem in multimedia networks with C com-

peting traffic types, with fixed initial time t0 and final time tf . If for each traffic type c,
Hc(t,N,Φ,Ψ,P(t)) is differentiable and convex in (N,Φc,Ψc) ∈ (R,ARc,LSc) ∀ t ∈
[t0, tf ], for each fixed value of (Φ1,Ψ1, ...,Φc−1,Ψc−1,Φc+1,Ψc+1, ...,ΦC ,ΨC)

∈ (AR1,LS1, ...,ARc−1,LSc−1,ARc+1,LSc+1, ...,ARC ,LSC),
then (Φ∗(t),Ψ∗(t)) ∈ (AR,LS) is a Nash equilibrium if and only if it solves the

following Optimal Control Problem ∀ t ∈ [t0, tf ]:

∀ c

minimize

∫ tf

t0

gc(t,N(t),Φ1∗(t),Ψ1∗(t), ...,Φc(t),Ψc(t), ...,ΦC∗(t),ΨC∗(t))dt

with respect to (Φc(t),Ψc(t))

such that Ṅ(t) = f(t,N(t),Φ(t),Ψ(t))

N(t0) = N0

(Φc(t),Ψc(t)) ∈ (ARc,LSc)

Proof: The proof follows from the definition of a Nash equilibrium [25,26,27]. 2

Theorem 2:
Consider the dynamic resource sharing problem in multimedia networks with C com-

peting traffic types, with fixed initial time t0 and final time tf . Let for each traffic
type c, gc(t,N,Φ,Ψ), f(t,N,Φ,Ψ), are continuously differentiable with respect to N ∈
Rn, ∀ t ∈ [t0, tf ]. If (Φ̂∗(t,N0), Ψ̂

∗(t,N0)) = (Φ∗(t),Ψ∗(t)) ∈ (AR,LS) is an open-loop
Nash equilibrium and {N∗(t), t ∈ [t0, tf ]} is the corresponding state trajectory, then
∃ Pc(t) : [t0, tf ] → Rn, ∀ c continuous and piecewise continuously differentiable vector
functions, such that ∀ t ∈ [t0, tf ]:

12



Ṅ∗(t) = f(t,N∗(t),Φ∗(t),Ψ∗(t)) (1)

N∗(t0) = N0 (2)

[

∂Hc∗

∂φc
o[sd]

−Qc
[sd](t)

]

∗ φc∗
o[sd](t) = 0 ∀ [sd], c

[

∂Hc∗

∂φc
π[sd]

−Qc
[sd](t)

]

∗ φc∗
π[sd](t) = 0 ∀ π[sd], [sd], c

[

∂Hc∗

∂ψc
[sd]

−Qc
[s.](t)

]

∗ ψc∗
[sd](t) = 0 ∀ [.d], [s.], c

∂Hc∗

∂φc
o[sd]

−Qc
[sd](t) ≥ 0 ∀ [sd], c

∂Hc∗

∂φc
π[sd]

−Qc
[sd](t) ≥ 0 ∀ π[sd], [sd], c

∂Hc∗

∂ψc
[sd]

−Qc
[s.](t) ≥ 0 ∀ [.d], [s.], c

Ṗc(t) = −∇NH
c(t,N∗,Φ∗(t),Ψ∗(t),Pc(t)) ∀ c (3)

Pc(tf ) = 0 ∀ c (4)

φc∗
o[sd](t) +

∑

π[sd]

φc∗
π[sd](t) = 1 ∀ [sd], c

∑

[.d]

ψc∗
[sd](t) = 1 ∀ [s.], c

φc∗
o[sd](t), φ

c∗
π[sd](t) ≥ 0 ∀ π[sd], [sd], c

ψc∗
[sd](t) ≥ 0 ∀ [.d], [s.], c

Proof: The Lagrangian for each traffic type c is

Lc = Hc +
∑

[sd]

Qc
[sd] ∗



1 − φc
o[sd] −

∑

π[sd]

φc
π[sd]



+
∑

[s.]

Qc
[s.] ∗



1 −
∑

[.d]

ψc
[sd]





with φc
o[sd], φ

c
π[sd], ψ

c
[sd] ≥ 0 ∀ π[sd], [sd], c
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Pontryagin’s maximum principle necessary conditions become:

Ṅ∗(t) = f(t,N∗(t),Φ∗(t),Ψ∗(t))

N∗(t0) = N0

∂Lc∗

∂φc
o[sd]

∗ φc∗
o[sd](t) = 0 ⇒ [

∂Hc∗

∂φc
o[sd]

−Qc
[sd](t)] ∗ φ

c∗
o[sd](t) = 0 ∀ [sd], c

∂Lc∗

∂φc
π[sd]

∗ φc∗
π[sd](t) = 0 ⇒ [

∂Hc∗

∂φc
π[sd]

−Qc
[sd](t)] ∗ φ

c∗
π[sd](t) = 0 ∀ π[sd], [sd], c

∂Lc∗

∂ψc
[sd]

∗ ψc∗
[sd](t) = 0 ⇒ [

∂Hc∗

∂ψc
[sd]

−Qc
[s.](t)] ∗ ψ

c∗
[sd](t) = 0 ∀ [.d], [s.], c

∂Lc∗

∂φc
o[sd]

≥ 0 ⇒
∂Hc∗

∂φc
o[sd]

−Qc
[sd](t) ≥ 0 ∀ [sd], c

∂Lc∗

∂φc
π[sd]

≥ 0 ⇒
∂Hc∗

∂φc
π[sd]

−Qc
[sd](t) ≥ 0 ∀ π[sd], [sd], c

∂Lc∗

∂ψc
[sd]

≥ 0 ⇒
∂Hc∗

∂ψc
[sd]

−Qc
[s.](t) ≥ 0 ∀ [.d], [s.], c

Ṗc(t) = −∇NH
c(t,N∗,Φ∗(t),Ψ∗(t),Pc(t)) ∀ c

Pc(tf ) = 0 ∀ c

∂Lc∗

∂Qc
[sd]

= 0 ⇒ φc∗
o[sd](t) +

∑

π[sd]

φc∗
π[sd](t) = 1 ∀ [sd], c

∂Lc∗

∂Qc
[s.]

= 0 ⇒
∑

[.d]

ψc∗
[sd](t) = 1 ∀ [s.], c

φc∗
o[sd](t), φ

c∗
π[sd](t) ≥ 0 ∀ π[sd], [sd], c

ψc∗
[sd](t) ≥ 0 ∀ [.d], [s.], c. 2

Theorem 3:
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Consider the dynamic resource sharing problem in multimedia networks with C com-
peting traffic types, with fixed initial time t0 and final time tf . Let for each traffic type
c, gc(t,N,Φ,Ψ), f(t,N,Φ,Ψ), are continuously differentiable with respect to (N,Φ,Ψ) ∈
(Rn,AR,LS), ∀ t ∈ [t0, tf ]. If (Φ̂∗(t,N,N0), Ψ̂

∗(t,N,N0)) = (Φ∗(t),Ψ∗(t)) ∈ (AR,LS)

is a closed-loop memoryless Nash equilibrium such that (Φ̂c∗(t,N,N0), Φ̂
c∗(t,N,N0)) is

continuously differentiable with respect to N ∈ Rn, ∀ c, t ∈ [t0, tf ] and {N∗(t), t ∈ [t0, tf ]}
is the corresponding state trajectory, then ∃ Pc(t) : [t0, tf ] → Rn, ∀ c, continuous and
piecewise continuously differentiable vector functions, such that ∀ t ∈ [t0, tf ]:

Ṅ∗(t) = f(t,N∗(t),Φ∗(t),Ψ∗(t))

N∗(t0) = N0

[

∂Hc∗

∂φc
o[sd]

−Qc
[sd](t)

]

∗ φc∗
o[sd](t) = 0 ∀ [sd], c

[

∂Hc∗

∂φc
π[sd]

−Qc
[sd](t)

]

∗ φc∗
π[sd](t) = 0 ∀ π[sd], [sd], c

[

∂Hc∗

∂ψc
[sd]

−Qc
[s.](t)

]

∗ ψc∗
[sd](t) = 0 ∀ [.d], [s.], c

∂Hc∗

∂φc
o[sd]

−Qc
[sd](t) ≥ 0 ∀ [sd], c

∂Hc∗

∂φc
π[sd]

−Qc
[sd](t) ≥ 0 ∀ π[sd], [sd], c

∂Hc∗

∂ψc
[sd]

−Qc
[s.](t) ≥ 0 ∀ [.d], [s.], c

Ṗc(t) = −∇NH
c(t,N∗, Φ̂∗(t,N∗,N0), Ψ̂

∗(t,N∗,N0),P
c(t)) ∀ c

Pc(tf ) = 0 ∀ c
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φc∗
o[sd](t) +

∑

π[sd]∈Π
c
[sd]

φc∗
π[sd](t) = 1 ∀ [sd], c

∑

[.d]∈D
c
[s.]

ψc∗
[sd](t) = 1 ∀ [s.], c

φc∗
o[sd](t), φ

c∗
π[sd](t) ≥ 0 ∀ π[sd], [sd], c

ψc∗
[sd](t) ≥ 0 ∀ [.d], [s.], c

Proof: The proof is similar to that for the open-loop solution.2

The following Theorems are easily derived:

Theorem 4: Admission Control
Traffic is rejected from the network only if its first derivative of its Hamiltonian w.r.t.

its rejection fraction is less than all first derivatives of its Hamiltonian w.r.t. its path
routing fractions to its destination:

∀c, [sd]:

φc∗
o[sd](t) > 0 only if

∂Hc∗

∂φc
o[sd]

= min{
∂Hc∗

∂φc
o[sd]

,min
p[sd]

{
∂Hc∗

∂φc
p[sd]

}}

φc∗
o[sd] = 0 o.w.

φc∗
o[sd](t) +

∑

π[sd]

φc∗
π[sd](t) = 1

and satisfies the partial differential vectors for the state (1), (2) and the costate (3),
(4) variables.

Theorem 5: Routing
There must be traffic only on paths with minimum first derivative of its Hamiltonian

w.r.t. its routing fractions and which are less than its first derivative of its Hamiltonian
w.r.t. its rejection fraction:

∀c, [sd], π[sd]:

φc∗
π[sd](t) > 0 only if

∂Hc∗

∂φc
π[sd]

= min{
∂Hc∗

∂φc
o[sd]

,min
p[sd]

{
∂Hc∗

∂φc
p[sd]

}}

φc∗
π[sd](t) = 0 o.w.

φc∗
o[sd](t) +

∑

π[sd]

φc∗
π[sd](t) = 1
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and satisfies the partial differential vectors for the state (1), (2) and the costate (3),
(4) variables.

Theorem 6: Load Sharing
For each source, there must be traffic only to destinations whose first derivative of its

Hamiltonian w.r.t. its load sharing fractions are minimum:

∀c, [sd]:

ψc∗
[sd](t) > 0 only if

∂Hc∗

∂ψc
[sd]

= min
[sd

′
]
{
∂Hc∗

∂ψc
[sd

′
]

}

ψc∗
[sd](t) = 0 o.w.

∑

[.d]

ψc∗
[sd](t) = 1

and satisfies the partial differential vectors for the state (1), (2) and the costate (3),
(4) variables.

So, in this section we have formulated and solved the dynamic resource sharing problem
in multimedia networks as a dynamic Nash game among multiple competing traffic types.

4. CONCLUSIONS

In this paper, we propose a game-theoretic approach to the dynamic resource sharing
problems in multimedia networks. First, we model the load sharing, routing and admission
control mechanisms on the path flow space. Then we introduce dynamic queueing models
to describe the dynamic evolution of the number of packets at every network resource.
Subsequently, we formulate the dynamic problem as a dynamic Nash game and give the
non-cooperative equilibrium conditions. Each decision-maker should allocate its traffic
only on its minimum marginal Hamiltonian paths with respect to the load sharing, routing
and admission controls.
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