
Chatzopoulou, D. I. & Economides, A. A. (2010). Adaptive assessment of student's knowledge in 
programming courses. Journal of Computer Assisted Learning, Vol. 26, No. 4, pp. 258-269. Wiley-Blackwell. 

ISSN (Print): 0266-4909, ISSN (Online): 1365-2729. 

Adaptive assessment in the class of programming 
 

Dimitra I. Chatzopoulou  and Anastasios A. Economides 
 

economid@uom.gr
http://conta.uom.gr

               
 

Information Systems Department 
University of Macedonia,  

Egnatia 156, Thessaloniki 54006, Greece 
 
 
 

Abstract 

This paper presents PAT (Programming Adaptive Testing), a Web-based adaptive 

testing system for assessing students’ programming knowledge. PAT was used in two 

high school programming classes by 73 students. The question bank of PAT consists 

of 443 questions. A question is classified in one out of three difficulty levels. In PAT 

the levels of difficulties are adapted to Bloom’s taxonomy lower levels and students 

are examined in their cognitive domain. This means that PAT has been designed 

according to pedagogical theories in order to be appropriate for the needs of the 

course “Application Development in a Programming Environment”. If a student 

answers a question correctly a harder question is presented, otherwise an easier one. 

Easy questions examine the student’s knowledge, while difficult questions examine 

the student’s skills to apply prior knowledge to new problems. A student answers a 

personalized test consisting of 30 questions. PAT classifies a student in one out of 

three programming skills’ levels. It can predict the corresponding classification of 

students in Greek National Exams. Furthermore, it can be helpful to both students and 

teachers. A student could discover his/her programming shortcomings. Similarly, a 

teacher could objectively assess his/her students as well discover the subjects that 

need to be repeated.   

 1

mailto:economid@uom.gr
http://conta.uom.gr/


 

Keywords: assessment of programming, computerized adaptive assessment, 

computerized adaptive testing, grading, personalized test, programming assessment, 

programming assignments, programming examination, programming skills, 

programming testing, student’s classification. 

 

1. Introduction 

Programming comprises a broad scientific field that demands not just immaculate 

theoretical knowledge, but also deep understanding of the framework of Structured 

Programming. Moreover, students need to have a deep understanding of the syntax of 

the language they are called upon to learn, in order to practice. People involved in 

Programming realize that the Science of Programming requires perfect handling of the 

logic behind the idea, rather than ability of memorizing the syntax of different 

languages.  

It is not uncommon that several students, upon completing a year of study on 

Programming, exhibit serious shortcomings on basic Programming knowledge 

(McCracken et al., 2001). It was found that students with little or no practical work 

were able to produce a piece of code in the final traditional way of assessment through 

memorization and achieve a “good” grade in the course (Woit & Mason, 2003). 

Furthermore, it is difficult to closely observe the progress of a particular student, 

especially in large classes. This happens because there is not enough available time 

for the teacher to interact personally with every student. Teaching and learning 

Programming has created significant difficulties to both teachers and students (Wang 

& Wong, 2008). Innovative ways are needed in order to improve the effectiveness of 

teaching Programming. Assessing the students’ programming knowledge using 

computers in a regular and continuous basis could help. The assessment results could 

 2



be used for continuous improvement of teaching effectiveness and learning quality 

(Khamis et al., 2008). 

The assessment should be carefully designed according to pedagogical theories. Lister 

& Leaney (2003a) encouraged teachers to design assignments according to the 

cognitive levels defined in the Taxonomy of Educational Objectives (Bloom, 1956). 

These levels are the following (from lowest to highest): 1) Recall of data, 2) 

Comprehension, 3) Application, 4) Analysis, 5) Synthesis, and 6) Evaluation. 

However, it is difficult to categorize a question into the proper cognitive level 

(Thomson et al., 2008). Bloom’s Taxonomy can be also used in the course design 

(Scott, 2003). Oliver & Dobele (2007) argued that the lower cognitive levels (Recall 

of data, Comprehension, and Application) should be gained during the first year of 

studies. Subsequently, the students could become able to move onto assessments that 

require higher cognitive levels (Analysis, Synthesis and Evaluation). Otherwise, the 

assessment will have a negative effect on students to make “upward progress”. 

One of the problems faced by Computer Science instructors is bridging the following 

two gaps: 1) gap between the course and what to teach, and 2) gap between what the 

students had been taught and how to assess this knowledge (Starr et al., 2008). This 

means that even if two schools offer the same course in Computer Science, the 

assessment can be different from one school to other because the teachers’ objectives 

and teaching as well the students’ demands may vary. So, the teaching and assessment 

should be tailored to each particular case.  

This study developed PAT, a computerized adaptive testing system for assessing 

students’ programming skills in Greek high schools. The questions are categorized 

both into three difficulty levels and into three cognitive levels (Recall of data, 

Comprehension, and Application). If a student answers correctly a question, the next 

question is more difficult. Otherwise, the next question is easier.  

 3



The next section 2 presents types of computerized assessment. Section 3 presents 

PAT, a multiple choice questions testing system that was developed and used in two 

high school programming classes by novice programmers. Section 4 describes the 

questions in the question bank as well the adaptive sequence of the questions. Section 

5 analyzes the results after the use of PAT by 73 students. Section 6 shows that PAT 

predicts the students’ classification in Greek National Exams. Section 7 presents the 

strengths and weakness of PAT. Finally, section 8 presents the conclusions and future 

research.   

 

2.  Computerized Testing of Programming Skills 

Computerized assessment offers speed, availability, consistency and objectivity of the 

assessment (Ala-Mutka, 2005). In order to assess programming skills, two types of 

computerized assessment could be used: 1) Code Writing, and 2) Multiple Choice 

Questions (MCQs). 

Whalley et al. (2006) showed that novice programmers were not yet able to work at 

fully “abstract level” (high cognitive level). So, students that can not read a short 

piece of code and describe it are not capable intellectually to write code by 

themselves. Thus, it is better to assess novice programmers using MCQs. On the other 

hand, if the students are at an advanced level and the course focus is on developing 

the students’ programming skills then it is better to use Code Writing Assessment. Of 

course, a combination of both types of assessment could be also used. 

Next, both types of computerized testing of the students’ programming skills are 

presented. 

2.1. Computerized Testing using Code Writing exercises 

There are many ways to answer an exercise in a programming language, and more 

specifically in high level programming languages. So, many instructors prefer to 

 4



correct manually the “solutions” given by the students. Ala-Mutka (2005) found that 

74% of instructors preferred the “practical work of assessment”. However, the manual 

inspection of the code is inefficient and the possibility to over or under estimate a 

student is increased (Kolb, 1984) depending on the number of students.  

Computerized testing could help in achieving accurate estimation of the student’s 

knowledge. However, the design of a Code Correction and Assessment system 

presents many difficulties regarding to its objectivity (Schwieren et al., 2006).  

Code Writing assessment systems could be divided into fully automatic and semi-

automatic systems (Ahoniemy et al., 2008).   

The main differences between semi-automatic and fully-automatic systems are 

the following: i) In a semi-automatic system a teacher completes the grading 

procedure; ii) Semi-automatic systems are mainly used when the students are 

novice programmers and they need support from a human; iii) The marking in 

semi-automatic systems is flexible and the teacher can give partial marks to a 

student even if his/her program is not completely correct (Suleman, 2008). This is 

not possible in fully-automatic systems; v) The quality and efficiency of the 

source code are very hard or unfeasible to be evaluated via a fully automated 

system. A fully-automatic system can not examine a student’s program at an 

abstract level (e.g. meaningfulness of variables). 

 

Next, the following semi-automatic tools are presented: ALOHA, ASSYST, EMMA, 

Sakai, and TRY.  

ALOHA (Ahoniemy et al., 2008) bases its objectivity on the use of “rubrics” (Becker 

2003) and through statistical analysis of the achieved grades distribution (Ahoniemi & 

Reinikainen 2006).    

In ASSYST (Jackson & Usher, 1997), the students submit their assignments via e-

mail. Instructors run the system, which tests and marks the submitted programs.  

 5



EMMA is a web-based tool (Tanaka-Ishii et al., 2004) where students’ programs are 

executed and tested on different inputs 

Sakai (Suleman, 2008) can compile, test, execute and score the student’s program 

without human intervention. If the output is not correct then a feedback is given to th 

student regarding his/her produced output and the expected one.   

In TRY (Reek, 1989), the students submit their programs and the instructors test 

them. The output evaluation is based on textual comparison. 

In aforementioned tools the tutor defines the grading process and some template 

feedback phrases. 

Next, the following fully-automatic tools are presented: BOSS, Marmoset, Oto, and 

PASS3. 

BOSS (Joy et al., 2005) supports both submission and testing of programs in various 

programming languages.  

 Marmoset monitors the student’s progress and sends a feedback to both the student 

and the instructor (Spacco et al., 2006). 

Oto is a marking tool that provides support for submission and marking of 

assignments in a programming course (Tremblay et al., 2007). At the end it sends the 

grade and the marking report to the student. 

PASS3 provides both immediate feedback to the student regarding his/her submission 

and a detailed performance statistic report regarding his/her progress (Choy et al., 

2008).  The differences with the previous version of PASS (Yu et al., 2006) are that 

there are multiple levels of difficulty, and a student selects the level according to 

his/her capabilities (Wang & Wong, 2008).  

The aforementioned tools helped to the creation of the xlx System (Schwieren et al. 

2006). The student’s code can be evaluated through Static and Dynamic control. The 

Static control checks the source code for syntactic errors. The Dynamic control 

 6



additionally examines the code’s performance, structure and output produced after its 

execution, in relation to a standard code.  

The common disadvantages of both semi-automatic and fully automatic tools are 

that both instructors and students should become familiar with such a system 

and the student must follow strict steps in order to complete his/her assessment. 

So, code writing assessment is more suitable for advanced programmers than for 

novice programmers. 

 

2.2.Computerized Testing using Multiple Choice Questions (MCQs) 

It is a common belief among many (Traynor & Gibson, 2005) in the field of education 

that multiple choice questions tests are the easy and the lazy way to assess students. 

However, research (Lister & Leaney, 2003b) has proved that quality multiple choice 

questions is by no means “the work of the lazy”. 

According to Lister (2005), assessment through MCQs can be effectively 

administered to beginner programmers who have acquired basic skills. If a student 

scores poorly or averagely on basic skills, s/he is bound to fail on final exams, which 

are comparatively more demanding and require more knowledge. However, well-

structured MCQs testing can be successfully used to test more complex skills (Jones 

1997; Kolstad 1994; Wilson 1991). Research has suggested (Rhodes et al., 2004) that 

MCQs comprises a feasible assessment method, if the questions are qualitative in 

order to provoke students’ knowledge and understanding of teaching material. 

Furthermore, according to Habeshaw et al., (1992) the objectivity can be achieved 

only through MCQs. 

Denenberg (1981) stressed the need that evaluation results, questioning and structure 

must all be based on quality; otherwise the assessment results are of little value. 

MCQs comprise a reliable evaluation method, not only in the theoretical field of 

 7



Information Science but also in Programming. In addition, the test’s complexity could 

be increased by increasing the number of suggested answers or by the addition of 

short-length answer questions.  

MCQs are divided into two categories (Denenberg, 1981): i) Knowledge questions 

consisting of questions on theoretical knowledge like gap-filling, true/ false and 

multiple choice, and ii) Programming ability questions consisting of code behavior 

questions to examine the capability of students to comprehend the logic of 

programming. More specifically, Denenberg (1981) suggests that students should be 

able to: 

• read a program (e.g. find the output of the program), 

• read a logical diagram (comprehension of its flows and operations), 

• convert a logical diagram to a code, 

• write a program (e.g. find commands from missing code). 

Before exams are carried out, students should be fully informed on what they are 

supposed to do and how they are supposed to be graded.  

Furthermore, Traynor & Gibson (2005) suggested the following requirements for 

effective Multiple Choice Questions: i) “Good Quality Code”, the code presented to 

the students should be of high standards. Unstructured code should not be used, ii) 

“No tricks”, the questions should focus on the normal behavior of the programs, and 

iii) “Quality Distracters”, the erroneous answers given as alternatives should be 

appropriate and of high feasibility, so as to ensure the sense of correctness in answers. 

So, many researchers believe that Multiple-Choice Questions could be used not only 

for the students’ assessment but also for students’ practice on basic knowledge of 

Programming. Moreover, the fact that correction and evaluation are carried out 

through the use of a computer renders the results objective and precise. For example, 

when a teacher has 100 papers to correct, there is the slight chance that s/he may over- 

 8



or under-estimate somebody’s work. So, Habeshaw et al. (1992) argued that the only 

way to objectively examine students is using MCQs.  

 

3. Presentation of PAT 

PAT (Programming Assessment Testing) is a Web-based fully automated assessment 

system. It was developed with the use of a Flash Mx tool. The programming was 

conducted in ActionScript and the final files were extracted in html format. PAT can 

be used in the school’s computer laboratory or via Web from anywhere. It was 

tailored to the course of “Application Development in a Programming Environment” 

(Bakali et al., 2004). This course is an introductory computer programming course in 

Greek high schools. This course is taught twice a week on a theoretical level and if 

there is enough time, students are encouraged to carry out practice training, i.e. code 

writing in a real programming environment1 or other pedagogical software. 

Instructors assess students in two semesters2. The second semester tests include the 

whole year teaching material. Semester tests and Panhellenic (Greek National) 

exams3 consist of paper-tests, involving True/ False, correspondence, output finding 

from a given code, conversion of logical diagrams into code or the opposite, and code 

writing questions. 

The emphasis concerning Semester tests or the Panhellenic (Greek National) exams is 

placed more on programming ability and knowledge questions (60%) than code 

writing (40%). It should be pointed out that students are examined in code writing 

only on paper. So, most of the students do not have the experience of solving 

problems in a real programming environment. 

                                                 
1 They use a pseudo-language named “Glossa” which can be best described as a Greek translation of 
Pascal. 
2 At the end of the year the average between first and second semester is computed which determines 
the final grade for this lesson in the school certificate. 
3 These exams determine if the students are going to continue their studies in a High Educational 
Institution (University or Technological Educational Institution). 

 9



Since these students are novice programmers, the most effective assessment method 

involves the use of Multiple Choice Questions instead of Code Writing. As we have 

already mentioned, Code Writing requires for students to exhibit an advanced level of 

knowledge, in order to cope with the demanding material.  

PAT was used in the schools computer lab, under the supervision of the teaching staff. 

The test takes approximately 45 minutes (one teaching hour). Students were assessed 

on 30 questions at the end of 2nd Semester and before the Panhellenic (Greek 

National) exams.   

PAT is not only a software tool to assess novice students in Programming but it can 

also predict their classification in the Programming course in National Exams. 

Programming comprises a core course in the Technological direction of the General 

Lykeion (High School). Students are examined in Programming in order to be 

admitted to Greek Universities (not necessarily only to enter Computer Science 

Departments). Furthermore, PAT could be used in a Summative Assessment (Khamis 

et al., 2008) which could be used to assess the level of learning at the end of the 

course. 

PAT was approved by the Greek Pedagogical Institute to be used in Greek high 

schools. During May 2009, 73 students from two schools (44 students from 1st school 

and 30 students from 2nd school) used PAT. Also, they answered evaluation 

Questionnaires regarding PAT’s Environment, Question Content and Usefulness. 

Results show that 61 students out of 73 found the experience positive and the tool 

very useful to increase their depth of knowledge in programming course and that they 

have been helped to discover their shortcomings. However, most of them think that 

they were underestimated by PAT in comparison to traditional exams. This may 

happened because they do not have the experience in computerized exams. Most of 

 10



the students (especially, low performance students) preferred to use PAT for learning 

and self-assessment than for testing.     

Next, several reasons are presented for using PAT: 

• Students will be able to practice and be assessed in Knowledge and 

Programming Ability Questions. 

• Most of the teachers who teach the programming course complain about the 

fact that teaching hours suffice only for teaching the exams material, leaving 

little time for practice. Through PAT students will be able to practice more 

frequently, not just in the laboratory environment but also via the Web. 

• Through the use of PAT, students will be able to discover their shortcomings 

in order to be prepared for the National Exams.  

• PAT’s friendliness will attract students of all levels to participate and practice 

as frequently as possible in order to increase their programming skills.  

 

4. Questions in PAT 

The book’s structure is such, so that the exam material is repeated (Bakali et. al, 

2004). Chapters 1, 4 and 6 provide the theory and serve as an introduction on the 

necessity of Programming; chapter 7 refers to the basic Programming elements and 

presents the pseudo-language (GLOSSA); chapters 2 and 8 provide an introduction to 

the structure of Sequence, Choice and Repetition; chapters 3 and 9 present Data 

Structures, with an emphasis on Tables; finally, chapter 10 deals with Sub-Programs.  

In PAT, each question is classified to a difficulty level: A = easy question, B = 

moderate question, C = difficult question. In addition, the question’s content was 

developed according to the low levels of Bloom’s Taxonomy (Bloom, 1956).  

The following Categories of questions were developed:  

 11



• Recall of data: Knowledge questions on the Theory of the course, the Syntax 

and Function of Frameworks of Structured Programming and of Sub-Programs 

in True/False and MCQ format (difficulty level A, B or C).  Such questions 

examine student’s memorization capability. 

• Comprehension: A piece of code and a question involving the behavior of the 

code (finding the output after the execution of a program). Such questions 

have been found efficient (Lister, 2001) as far as student’s assessment on their 

ability to read and comprehend the code’s Semantic (difficulty level B or C).  

• Application: Exercises to examine students’ skills to apply prior knowledge to 

new problems. Three types of exercises were used: 1) a piece of code, which 

can be realized through a Structure of Process or Choice or Repetition, where 

a student is called to choose an equivalent command for the execution of the 

above functions (difficulty level B); 2) also a Logical Diagram is given, where 

the student is called upon to find the equivalent command to express one or 

more functions (difficulty level C); 3) gap filling in a piece of code or program 

according to some expressions (Lister & Leaney, 2003a). Program gap filling 

difficulty (level B and mostly level C) is the most difficult activity and needs 

much more consideration and capabilities, also it helps students in increasing 

their power of solving sub-problems (Hwang et al., 2008). 

These students were novice programmers. So, they were examined at the lower levels 

of Bloom’s Taxonomy. Oliver & Dobele (2007) showed that the pass rates of courses 

with higher cognitive demands (Analysis, Synthesis and Evaluation) were increased in 

relation with lower cognitive demands (Recall of data, Comprehension and 

Application). This means that if a first year experience in programming demands a 

high cognitive level of assessment then weaker students are prevented to continue 

their studies in this science.  

 12



The following Table 1 shows the number of questions with respect to Bloom’s 

Taxonomy and difficulty level. 

[Insert Table 1] 

Another factor that increases the difficulty of question is the number of possible 

answers. A student should have deeper knowledge of the subject In order to answer 

correctly a question with many possible answers than with few possible answers. 

Table 2 presents the number of possible answers per difficulty level. 

[Insert Table 2] 

4.1 Model Structure 
 
PAT presents to a student 30 questions from various Chapters of the exam material, 

depending on the students’ level. Each student is tested on different questions at 

different levels. This ensures the quality of the exams as far as cheating is concerned, 

since students sit in close proximity in computer laboratories. 

The student moves from one difficulty level to another according to his/her answer. If 

s/he answers an “A” question correctly then the next question is “B” otherwise it is 

“A”. If s/he answers a “B” question correctly then the next question is “C” otherwise 

it is “A”. If s/he answers a “C” question correctly then the next question is “C” 

otherwise it is “B”.  

At the end of the test, PAT shows the student’s total number of correct and wrong 

answers per chapter and level. Also, it shows the student’s total number of correct 

answers out of 30, his/her final score and classification. 

 
5. Grading 
 
Significant effort was placed on Feedback. PAT seeks to serve both the teacher and 

the student. As far as the student is concerned, PAT not only serves as a means of 

practice on the exam material, but also as a means of feedback on student’s 

 13



shortcomings per chapter. As far as the teacher is concerned, PAT functions as a 

means of assessing the students’ programming levels which indicates how well they 

are prepared for Panhellenic (National) exams. Then the teacher could try to help 

students overcome their weaknesses. 

5.1 Analysis of the results  

If, following the aforementioned structure, the student correctly answers all 30 

questions (from 0 to 29), s/he will obtain the following best performance sequence of 

question levels: 

A, B, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, 

C. 

On the contrary, if the student answers all 30 questions incorrectly, the worst 

performance sequence of question levels will be as follows: 

A, A, A, A, A, A, A, A, A, A, A, A, A, A, A, A, A, A, A, A, A, A, A, A, A, A, A, 

A, A,A. 

In the Results printout, the answers given by the student are characterized by the letter 

of the difficulty level and the corresponding question number, LQn, where L is the 

difficulty level (A, B or C) and Qn is the number of the question at the corresponding 

Level (Qn= 0..185 for level A, Qn=0..147 for level B, and Qn=0..108 for level C). For 

example, the following questions sequence appeared at a student’s Results printout: 

A5, B7, C3, B33, A12, B1, C77, C4, C100, B18, C5, C7, B22, A23, A27, A34, 

A47, A61, B75, C62, C55, C59, B81, C80, C19, B9, C0, C41, B29, A30. 

This questions’ sequence helps the teacher to immediately recognize which questions 

the student failed. Regarding the example’s questions sequence, the student answered 

wrongly the following questions: 

      C3: because a level B question follows 

B33: because a level A question follows 

 14



      Also C100, C7, B22, A23, A27, A34, A47, C59, C19, C41 and B29. 

At the end of the test, the following results are presented for each student:  

(a) Total Result (x): Number of the correct answers out of 30,  

(b) Number of the correct answers per level in relation to the total number of 

questions per Level,  

(c) Final Score (y) given by the following formula: 

Final Score = 1* Number of Correct Answers at level  A+ 

        2* Number of Correct Answers at level  B+ 

        3* Number of Correct Answers at level  C 

(d) Classification of student which depends both on the Total Result  and on the Final 

Score.  

More specifically the classification is calculated as follows:                        

         if  (0<=x<=17) and (0<=y<=33)      

             TRY HARDER - LOW PROGRAMMING SKILLS! 

         if (16<=x<=20) and (34<=y<=51)   

                   GOOD – MEDIUM PROGRAMMING SKILLS!! 

               if (21<=x<=30) and (52<=y<=87)   

                   VERY GOOD – HIGH PROGRAMMING SKILLS!!! 

(e) Analytical Results section contains all Questions presented to the student per 

chapter during the test and the total wrong answers per chapter. This facilitates the 

student’s study, as s/he can study again the chapters in which s/he gave wrong 

answers.  

An example of a Result printout template is presented (Figure 1): 

[Insert Figure 1] 

Upon closer examination of the Result printout, it can be inferred that the majority of 

this student’s correct answers belong to Level A questions (6 Questions: A89, A119, 

 15



A28, A139, A56, A3) and his Total Result is 6 correct answers out of 30 questions. 

So, the student was unsuccessful in most of the questions.  

This student’s Final Score is 6/87 (6%). More specifically, out of the 24 Level A 

questions s/he answered correctly only 6. So, s/he achieved Final Score = 6 out of 87. 

It is obvious that s/he is a Low Programming Skills student. 

Finally, the Application Menu also includes the choice “teacher”. Through this 

choice, the teacher can read or print all the questions according to level and per 

chapter in order to evaluate the students’ shortcomings in detail (which questions and 

what chapters). 

Based on our investigation using 73 students we classify students in 3 classes: 

5.1.1 High Programming Skills’ students 

We consider that a student could be classified as a High Programming Skills’ student 

if s/he answers correctly at least 21 questions and obtains Final Score at least 52/87 

(60%).  

Example: High Programming Skills’ student with the lowest Total Result and Final 

Score 

A A B C B A A B C B C C C C C B C C B C C C C B C C B C C C  

This student has 2 correct answers on level A, 7 correct answers on level B, and 12 on 

level C. So, s/he achieves Final Score = 2*1 + 7*2 + 12*3 = 2 + 14 + 36 = 52/87, and 

Total Result = 21/30. The majority of answers correctly answered (12) belong to level 

C. 

A High Programming Skills’ student will answer correctly questions mostly at level C 

(Graph 1). 

[Insert Graph 1] 

In order to support our argument for High Programming Skills’ students, the 

following Table 3 is presented:  

 16



[Insert Table 3] 

where Mean is the average number of correct answers per High Programming Skills 

student and StDev is the standard deviation. On average, High Programming Skills’ 

students answered correctly 15 out of 30 (50%) questions from level C (Table 3). 

5.1.2 Medium Programming Skills’ students  
 
If a student performed well in Knowledge Questions and at a moderate level in 

Programming ability Questions, s/he will be classified as a Medium Programming 

Skills student. In our sample most of the students answered correctly questions mostly 

to Level B and C (Graph 2).  

[Insert Graph 2] 

In order for the student to be classified as a Medium Programming Skills’ student s/he 

will have to achieve a Final Score of at least 34/87 (39%) and a Total Result of at 

least 16/30. For a Medium Programming Skills’ student, the highest Total Result is 

20/30 and the highest Final Score is 51/87 (58.6%). 

In order to support our argument for Medium Programming Skills’ students, the 

following Table 4 is presented: 

[Insert Table 4] 

As we can see from the Table 4 the number of correct answers is spread across all 

difficulty levels questions but the majority belong to levels B and C questions (14 out 

of 30, approximately 50%). 

Example: Medium Programming Skills’ student with most correct answers from level 

C questions 

          A A B C B C B C B A B C C C B A B C B A B C C C C C C C C C 
 

This student has 4 correct answers on Level A, 6 on Level B and 10 on Level C. So, 

s/he achieves Final Score = 4*1 + 6*2 + 10*3 = 4 + 12 + 30 = 46/87, and Total Result 

= 20/30. This means that s/he answered correctly questions (10) mostly at Level C. 

 17



However, this is not enough to place the student at High Programming Skills. As we 

can observe the student answers wrongly 10 out of 30 questions and as a result s/he is 

properly placed as a Medium Programming Skills’ student. 

5.1.3 Low Programming Skills’ students  

A Low Programming Skills’ student needs to study more. The majority of his/her 

correct answers do not necessarily belong to level A. However, the percentage of level 

C correct answers is lower than that of levels A and B. Otherwise the student has 

problem in questions that requires memorization.   

Nevertheless, most of the students’ correct answers were on level A questions (recall 

of data), 31 students out of 40 show that frequency (Graph 3).  

[Insert Graph 3] 

The highest Total Result that can be achieved by a Low Programming Skills’ student 

is 17/30. Also, the highest Final Score is 33/87. 

In order to support our argument for Low Programming Skills’ student, the Table 5 is 

presented: 

[Insert Table 5] 

The above Table 5 shows that the majority of correct answers are mostly from level A 

questions. Also, the average number of correct answers from level C questions is very 

low. 

Example: Low Programming Skills’ student with most correct answers from level A 

questions 

A A A A A A A B A B A A B A A A A A A B A A B A A A B A A B 

This student only has 7 correct answers at level A questions. So, s/he achieves Final 

Score = 1*7 = 7/87 and Total Result = 7/30. 

 
6. Prediction of students’ classification in National Exams 

 18



The results of the 73 students that took the test on PAT (Graph 4) indicate that 45% of 

them performed well. However, 55% of the Low Programming Skills students need to 

practice more in order to achieve better grade in Panhellenic (National) exams. 

According to their teachers, most of the students do not practice often. They 

memorize instead of comprehending the logic of programming.  

[Insert Graph 4] 

The following Table 6 provides the correspondence of the students’ classifications 

using PAT and their expected performance in the Programming course in National 

Exams. 

[Insert Table 6] 

Using PAT classification, in the two high schools where this study was carried out, 

we predicted that in the 2009 National Exams (Computer Programming course), 55% 

of the students will score below 12, 27% of them between 12 and 18, and 18% of 

them between 18 and 20 (maximum possible grade).   

The following Table 7 testifies that PAT can predict the students’ classification in 

National Exams (Computer Programming course). Indeed, 56% of the students scored 

below 12, 27% of them between 12 and 18, and 17% of them between 18 and 20. 

[Insert Table 7] 

 
7. Strengths and Weaknesses of PAT 

PAT is a Web-based adaptive testing system for assessing high school students’ 

programming knowledge. It is based on a graphical environment and is user-friendly. 

Its item bank contains a large number (443) of MCQs at various difficulty levels and 

Bloom’s taxonomy levels. It presents to a student 30 randomized questions adapted to 

the student’s programming knowledge. So, every student receives different questions 

from the other students and cheating becomes almost impossible. The adaptive 

 19



sequence of questions increases the student’s motivation since s/he is challenged by 

the questions’ levels. 

 

PAT provides:     

• Adaptation to the student’s programming skills. 

• Successful classification of the students. 

• Prediction of students’ performance in Greek National Exams. 

• Automated Assessment Process. 

• Speed in Results production. 

• Large library of questions - possibility of test repetition with renewed interest.  

• Memorization of questions by students is rendered difficult. 

• Indication of students’ sufficient preparation for participation in Panhellenic 

(Greek National) exams. 

• Exposure of students’ weaknesses per chapter of the exam curriculum. 

• Pleasant and usable Graphic Work Environment (it was developed using 

FlashMx). 

• Convenience of practice either in school laboratories (local) or via the Web. 

• The execution of PAT software requires only the installation of a browser and 

one can run PAT from any hard disk device even without Internet connection. 

However, PAT presents also some shortcomings. It contains items to test only 

beginners in programming. Also, it was developed to test student’s programming 

skills on “Glossa”, a pseudo-language for Greek students.  

 

8. Conclusions and Future Research 

 20



Different schools in different countries have different requirements for teaching and 

assessing students’ computer programming skills. PAT was developed to help Greek 

high school students and teachers to evaluate students’ programming skills. PAT is 

not only an adaptive assessment tool but it can also predict the students’ classification 

in the corresponding course in National Exams. 

Future work will further validate PAT’s objectivity and reliability to accurately 

classify students. PAT will be extended to support the assessment of other 

programming languages (e.g. Java, Visual Basic) as well as code writing exercises. 

Then, it will be used by students at various schools as well University departments in 

introductory programming classes.  

PAT could be used as a self-assessment too. It will be extended to let a student 

choosing the chapter and the level that s/he wishes to be examined. Also, it could be 

extended to enable the teachers to upload their own questions. Finally, various 

statistical results regarding a question, a student and a class will be available to the 

student and the teacher.  

 

 21



 

 

 

REFERENCES 
 

Ahoniemi, T. and Reinikainen, T. (2006). ALOHA – A grading tool for semi-automatic 
assessment of mass programming courses. Proceedings of the 6th Baltic Sea conference 
on Computing education research: Koli Calling 2006, Uppsala, Sweden, pp. 139-140. 
 
Ahoniemi, T., Lahtinen, E. and Reinikainen, T. (2008). Improving pedagogical feedback 
and objective grading. ACM SIGCSE Bulletin, Vol. 40, No. 1, pp. 72-76. 
 
Ala-Mutka, K.M. (2005). A survey of automated assessment approaches for programming 
assignments. Computer Science Education, Vol. 15, No. 2, June 2005, pp.83-102. 
 
Arnow, D. and  Barshay, O. (1999). On-line programming examinations using Web to 
teach. ACM SIGCSE Bulletin, Vol. 31, No. 3, pp. 21-24. 
 
Bakali, A., Giannopoulos, I., Ioannidis, N., Kilias, C., Malamas, K., Manolopoulos, J. and 
Politis, P. (2004). Application development in programming environment- Third class in 
General Senior High School of Greece. 5th edition, Organization of School Books 
Publications, Athens. 
 
Becker, K. (2003). Grading programming assignments using rubrics. ACM SIGCSE 
Bulletin, Vol. 35, No. 3, pp. 253. 
 
Berry, R.E. and Meekings, B.A.E. (1985). A style analysis of C programs. 
Communications of ACM, Vol. 28, No. 1, pp. 80-88.  
 
Bloom, B.S. (1956). Taxonomy of educational objectives. Handbook I. Cognitive 
Domain. Longmans, Green and Company, pp. 201-207. 
 
Brusilovsky, P. and Sosnovsky, S. (2005). Engaging students to work with self-
assessment questions: A study of two approaches. ACM SIGCSE Bulletin, Vol. 37, No. 
3, pp. 251-255. 
 
Califf, M.E. and  Goodwin, M. (2002). Testing skills and knowledge: Introducing a             
laboratory exam in CS1. ACM SIGCSE Bulletin,Vol. 34, No. 1, pp. 217-221.  
 
Carter, J., Ala-Mutka, K., Fuller, U., Dick, M., English J., Fone, W. and Sheard, J. (2003). 
How shall we assess this? ACM SIGCSE Bulletin, Vol. 35, No. 4, pp. 107-123. 
 
Choy, M., Lam, S., Poon, C.K., Wang, F.L., Yu, Y.T. and Yuen, L. (2008). Design and 
implementation of an automated system for assessment of computer programming 
assignments. Advances in Web Base Learning, Proceedings of the 6th International 
Conference on Web-based Learning (ICWL 2007), Springer, LNCS 4823, pp. 584-596. 
 

 22



Daly, C. and Horgan, J. (2001). Automatic plagiarism detection. Proceedings of the 
International Conference in Applied Informatics, pp. 255-259.  
 
Daly, C. and Waldron, J. (2004). Assessing the assessment of programming ability. ACM 
SIGCSE Bulletin, Vol. 36, No. 1, pp. 210-213. 
 
Denenberg, A.S. (1981). Test construction and administration strategies for large 
introductory courses. ACM SIGCSE Bulletin, Vol. 13, No. 1, pp. 235-243. 
 
English, J. (2002). Experience with a computer-assisted formal programming 
examination. ACM SIGCSE Bulletin, Vol. 34, No. 3, pp. 51-54.  
 
Habeshaw, S., Gibbs, G. and Habeshaw, T. (1992). 53 problems with large classes- 
Making the best of a bad job. Technical and Educational Services Ltd., Bristol, U.K. 
 
Hwang, W-Y., Wang, C-Y., Hwang, G-J., Huang, Y-M. and Huang, S. (2008). A web-
based programming learning environment to support cognitive development. Interacting 
with Computers, Vol. 20, No. 6, pp. 524-534. 
   
Jackson, D. (2000).  A semi-automated approach to online assessment. ACM SIGCSE 
Bulletin, Vol. 32, No. 3, pp. 164-168. 
 
Jackson, D. and Usher, M. (1997). Grading student programs using ASSYST.            
ACM SIGCSE Bulletin, Vol. 29, No. 1, pp.335-339. 
 
Jones, A. (1997). Setting objective tests. Journal of Geography in Higher Education, Vol. 
21, No. 1, pp. 104-106. 
 
Joy, M., Griffiths, N. and Boyatt, R. (2005). The BOSS online submission and assessment 
system. Journal on Educational Resources in Computing, Vol.5, No 3, pp. 1- 28. 
 
Khamis, N., Idris, S., Ahmad, R. and Idris, N. (2008). Assessing object-oriented            
programming skills in the core education of computer science and information 
technology: Introducing new possible approach. WSEAS Transactions on Computers, 
Vol. 7, No. 9, pp. 1427-1436. 
 
Kolb, D.A. (1984). Experiential Learning: Experience as the source of learning and 
development. Prentice Hall: Englewood Cliffs, N.J. 
 
Kolstad, R.K. and Kolstad, R.A. (1994). Applications of conventional and non-restrictive 
multiple-choice examination items. Clearing House, Vol. 56, No. 4, pp. 153-155. 
 
Lister, R. (2001). Objectives and objective assessment in CS1. ACM SIGCSE Bulletin, 
Vol. 33, No. 1, pp. 292-296. 
 
Lister, R. and Leaney, J. (2003a). First year programming: let all the flowers bloom. 
Proceedings of the fifth Australasian conference on Computing Education, Vol. 20, 
Adelaide, Australia, ACM, pp. 221-230. 
 
Lister, R. and Leaney, J. (2003b). Introductory programming criterion - referencing, and 
Bloom. ACM SIGCSE Bulletin, Vol. 35, No. 1, pp. 143-147. 

 23



 
Lister, R. (2004). Teaching Java first experiments with a pigs-early pedagogy. 
Proceedings of the sixth conference on Australasian computing education, Vol. 30, 
Dunedin, New Zealnd, ACM, pp. 177-183. 
 
Lister, R. (2005). One small step toward a culture of peer review and multi-institutional 
sharing of educational resources: A multiple choice exam for first semester students. 
Proceedings of the 7th Australasian conference on Computing education, Vol. 42, 
Newcastle, New South Wales, Australia, ACM, pp. 155-164.  
 
Mason, D.V. and Woit, D. (1998). Integrating technology into computer science 
examinations. ACM SIGCSE Bulletin, Vol. 30, No. 1, pp. 140-144. 
 
McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-
D.,Laxer, C., Thomas, L., Utting, I. and Wilusz, T. (2001). A multi-national, multi-
institutional study of assessment of programming skills of first-year CS students. ACM 
SIGCSE Bulletin, Vol. 33, No. 4 , pp.125-180.  
 
Oliver, D. and Dobele, T. (2007). First year courses in IT: A Bloom rating. Journal             
of Information Technology Education, Vol. 6, pp. 347-359. 
 
Reek, K. (1989). The TRY system-or-how to avoid testing student programs. ACM 
SIGCSE Bulletin, Vol. 21, No. 1, pp. 112-116. 
 
Rhodes, A., Bower, A. and Bancroft, P. (2004). Managing large class assessment. 
Proceedings of the sixth conference on Australasian computing education, Vol. 30, 
Dunedin, New Zealand, ACM, pp. 285-289. 
 
Schwieren, J., Vossen, G. and Westerkamp, P. (2006). Using software testing techniques 
for efficient handling of programming exercises in an e-Learning platform. The 
Electronic Journal of e-Learning, Vol. 4, No. 1, pp. 87-94. 
 
Scott, T. (2003). Bloom’s taxonomy applied to testing in computer science classes. 
Journal of Computing Sciences in Colleges, Vol. 19, No. 1, pp. 267-271. 
 
Spacco, J., Hovemeyer, D., Pugh, W., Emad, F., Hollingsworth, J.K. and Padua-Perez, N. 
(2006).  Experiences with Marmoset: Designing and using an advanced submission and 
testing system for programming courses. ACM SIGCSE Bulletin, Vol. 38, No. 3, pp. 13-
17.  
 
Starr, C.W., Manaris B. and Stavley R.H. (2008). Bloom’s taxonomy revisited:            
Specifying assessable learning objectives in computer science. ACM SIGCSE Bulletin, 
Vol. 40, No. 1, pp. 261-265. 
 
Suleman, H. (2008). Automatic marking with Sakai. Proceedings of the 2008 annual 
research conference of the South African Institute of Computer Scientists and Information 
Technologists on IT research in developing countries: riding the wave of technology, 
Wilderness, South Africa, ACM, pp. 229-236. 
 

 24



Tanaka-Ishii, K., Kakehi, K. and Takeichi, M. (2004). A Web-based report system          
for programming course – automated verification and enhanced feedback.  ACM SIGCSE 
Bulletin, Vol. 36, No. 3, pp. 278-285.   
 
Thomson, E., Luxton-Reilly, A., Whalley, J.L., Hu, M., Robbins, P. (2008). Bloom’s 
taxonomy for CS assessment. Proceedings of the tenth conference on Australasian 
computing education,  Volume 78, Wollongong, Australia, ACM, pp. 155-161. 
 
Traynor, D. and Gibson, J.P. (2005). Synthesis and analysis of automatic assessment 
methods in CS1. ACM SIGCSE Bulletin, Vol. 37, No. 1, pp. 495-499. 
 
Traynor, D., Bergin, S. and  Gibson, J.P. (2006). Automated assessment in CS1. 
Proceedings of the 8th Austalian conference on Computing education, Vol. 52, Hobart, 
Australia, ACM, pp. 223-228. 
 
Tremblay, G., Guerin, A., Pons, A. And Salah, A.(2008). Oto, a generic and extensible 
tool for marking programming assignments. Software: Practice and Experience, Vol. 38, 
No. 3, p.p. 307-333   
 
Wang, F.L. and Wong T.L. (2008). Designing programming exercises with computer            
assisted instruction. Proceedings of the First International Conference on Hybrid Learning 
and Education (ICHL 2008), Hong Kong, China, August 13-15, 2008 Springer, LNCS 
5169, pp. 283-293. 
 
Whalley, J.L., Lister, R., Thompson, E., Clear, T., Robbins, P., Kumar, P.K.A. and 
Prasad, C. (2006). An Australasian study of reading and comprehension skills in novice 
programmers, using the Bloom and SOLO taxonomies. Proceedings of the 8th Austalian 
conference on Computing education, Vol. 52, Hobart, Australia, ACM, pp. 243-252.  
 
Woit, D. and Mason, D. (2003). Effectiveness of online assessment. ACM SIGCSE 
Bulletin, Vol. 35, No. 1, pp. 137-141. 
 
Wilson, T.L. and Coyle, L. (1991). Improving multiple choice questioning: Preparing 
students for standardized test. Clearing House, Vol. 64, No. 6, pp. 421-423. 
 
Yu, Y.T., Poon, C.K. and Choy, M. (2006). Experiences with PASS: Developing and            
using a programming assignment assessment system. Proceedings of the Sixth 
International Conference on Quality Software (QSIC’06), IEEE, pp. 360-368. 

 

 

 
 

 25



 

 A B C 
Total # Questions 
per Bloom’s Level 

Recall of data 186 93 30 309 
Comprehension 0 35 18 53 
Application 0 20 61 81 
Total # Questions 
per difficulty level 186 148 109 443 

 
Table 1: Number of questions which respect to Bloom’s Taxonomy and difficulty 

level. 
 

0% 20% 40% 60% 80% 100%

A

B

C

Recall of data

Comprehension

Application

 
Graph 1: Percentages of questions which respect to Blooms’ Taxonomy and 

difficulty level. 
 

Level οf 
Questions 

Possible Answers in 
Multiple Choice Questions 

True/ False Questions 
(2 possible answers) 

A 3 v 
B 4 v 
C 5 --- 

 
Table 2: Number of possible answers per difficulty level 

 26



 
Figure 1: Adaptive Sequence of question in PAT 

 

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13

correct answers Level A correct answers Level B correct answers Level C

 
Graph 2: Correct answers per level by High Programming Skills’ students (13 

students out of 73) 
 

 Mean StDev 

correct answers on 
level A questions 2,077 1,115 

correct answers on 
level B questions 6,077 1,320 

correct answers on 
level C questions 14,846 2,764 

 
Table 3: Correct answers per level by the 13 High Programming Skills’ students  

 27



0
2
4
6
8

10
12
14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

correct answers Level A correct answers Level B
correct answers Level C

 
Graph 3: Correct answers per level by Medium Programming Skills’ students (20 

students out of 73) 
 

 Mean StDev 

correct answers on 
level A questions 4,55 1,234 

correct answers on 
level B questions 6,55 1,82 

correct answers on 
level C questions 7,25 2,468 

 
Table 4: Correct answers per level by the 20 Medium Programming Skills’ 

students 

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

correct answ ers Level A correct answ ers Level B correct answ ers Level C

 
Graph 4: Correct answers per level by Low Programming Skills’ students (40 

students out of 73) 
 
 
 
 

 28



 
 

 
 
 
 
 
 

 

 Mean StDev 

correct answers on 
level A  questions 7 1,301 

correct answers on 
level B questions 4,2 2,301 

correct answers on 
level C  questions 1,45 1,449 

Table 5:  Correct answers per level by the 40 Low Programming Skills’ students 
 

 
 

 
 

Figure 2: Result template: TRY HARDER (Low Programming Skills)  
 

 29



 
 

Graph 5: Classification of students using PAT  
 
 

Programming 
Skills 

   Total  
   Result 

Final 
Score 

Performance in  
National Exams 

 High    21-30 52-87       18-20 
 Medium    16-20 34-51             12-17.9 
 Low    0-17 0-33        0- 11.9 

 
Table 6: Correspondence between PAT students’ classification, Total Result, Final 

Score and Performance in National Exams 
 
 

Programming 
Skills 

Performance in  
National Exams 

PAT classification National Exams 
classification 

 High       18-20 18% 17% 
 Medium             12-17.9 27% 

45% 
27% 

         44% 

 Low              0- 11.9                     55%               56% 
 

Table 7: Correspondence between PAT Assessment and National Exams 
Assessment 

 30



 

 31


