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Chapter 5

Dynamic Formulation

In this chapter, we develop three novel methodologies for the dynamic problem:

1) the dynamic team optimization methodology, ii) the dynamic Nash game metho-
dology, and 111) the dynamic Stackelberg game methodology. For each methodolo-
dology, we develop three alternative formulations of the joint problem, namely an
optimal control, a nonlinear complementarity problem and a variational inequality
formulation. For each formulation, we state the necessary and sufficient condi-
tions for existence and uniqueness of the solution. From Pontryagin’s maximum
principle, we also derive the form of the solution, that there should be flow only
on minimum length paths, to minimum length destinations, The length at each
system resource 1s appropriately defined for each case. Then we apply these three
methodologies to datagram, virtual circuit and integrated services networks. We
develop new dynamic queueing models for multiple classes and priority classes of
Jobs, as well as linearized approximate dynamic queueing models and Wiener pro-
cess models. We introduce several new cost functions and state constraints. We
explicitly solve an example for virtual circuit networks. We consider a virtual cir-
cuit network with Poisson arrivals of virtual circuits and packets, and exponential
service requirements. We want to minimize the expected cost of servicing or re-
jecting virtual circuits, minimize the expected cost of packet delay and maximize
the expected profit from packet throughput. We find the dynamic team optimality
conditions and we propose a state dependent routing and congestion control algo-

rithm. We investigate and compare (via simulation) this state dependent routing
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algorithm to the optimal quasi-static algorithm. We find that the more often that
we update the state dependent algorithm and the more recent information that
we use the better. When the updating period is not much larger than the mean
interarrival time of virtual circuits, then this state dependent algorithm achieves

smaller average packet delay than the optimal quasi-static algorithm.

5.1 Team Optimal Solution

[n this section, we formulate the dynamic joint load sharing, routing and congestion
control problem on the path flow space as a cooperative dynamic team game among
cooperative classes.

Customers of each class cooperate in using the resources of the distributed sys-
tem for the social welfare. The behavior of each class is similar to that of any
other class, that is to operate optimally for the average job. Ho [218] presents a
tutorial on team theory where the decision makers have access to different infor-
mation concerning the underline uncertainties. Leitmann [297] provides a rigorous
analysis of cooperative and zero-sum non-cooperative games.

Next, we give the definition for a Pareto optimal solution, for the joint load
sharing, routing and congestion control problem on the path flows.

Definition:

A vector (®*,¥*) € (RC,LS) s called a Pareto optimal solution for a C'-class

joint load sharing, routing and congestion control problem if and only if there exists

no other vector (®,¥) € (RC,LS) such that
Jo(®,¥) < J(®*,¥*) VYV (®,¥)e (RC,LS)

with strict inequality holding for at least one class c.

Define a global cost function

1/p

J(®,¥) = |> [w = J(®,T)P

.
where 1 < p < o0, chr—'l, w" >0 Ve
=1
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For p — ~, we have a munimar problem [122], since the cost function becomes

J(®,¥) = mf.x{wc « J(®,P¥)}

Another problem formulation is

such that
w'*xJ(Pe,¥)<e Ve

Furthermore, another problem formulation is

min J(®, ¥)
A

such that
J(®, ¥)< J(®,T) Ve

where J¢ is the maximum acceptable value for the cost function J¢.
Next, we give the definition for a team optimal solution (27|, for the joint load

sharing, routing and congestion control problem on the path flows.

Definition:

A vector (®*,W*) € (RC,LS) s called a team optimal solution for a C-class

joint load sharing, routing and congestion control problem if and only of

J(®*,%*) < J(®,¥) V(& ¥)c(RC,LS)

In the next sections, we develop three alternative formulations for the joint

load sharing, routing and congestion control problem.

5.1.1 Optimal Control Formulation

In this section, we formulate the dynamic cooperative joint load sharing, routing
and congestion control problem as an Optimal Control Problem (OCP). Algorithms

for solving OCPs i1s a thoroughly investigated research area and popular algorithms
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may be found in books by Athans & Falb [14], Lee & Markus [292], Plant 13811,
Sage [415], McCausland [325], Dyer & McReynolds [131], Kirk [254], Russell [412],
Gruver & Sachs [203], Sethi & Thompson [440], Knowles [262], Lewis [301] among
others.

Define the  Hamiltonian as

H(t,X.®,¥,P)=g(t,X.®, )+ P« f(t,X, $,7)

5 . ¢,k c.k e,k o,k T . . ot .
where P = ... Pii o - Pilig - Fofaq) - Pl ipreq ) * vector of costate variables.

Define also the derivatives of H with respect to the congestion, routing and
load sharing fractions at (¢, X*(t), ®*(t), ¥*(t).P(¢)) as

GH* GH(t,X,®,¥.P)

e £= 7 (6, (), B (t)F (), Pit))
Pofsd) Polsd

SH* GH(t,X,®,¥,P)

— = = [(6.X*(£),87(£). %" (1), P(t)
t;b‘rr[,n:,l’] EI}‘?T[-!EE]

oH* dH(t,X,®,¥,P)

= (6. (£),8* (1), B *(¢).P(¢))
¥lad] ¥[sd]

Define also the Lagrangian as

L (t.X.%,%.P,Q) =H(t,X,®,%,P)+

+ Z Z Qfsq) * |1 — Pofed) — Z rfed] | T

¢ [sdleSD® nlsdjellf

e

+Z Z Qfs.]* 1 - Z fsd]

¢ [s.]E5C [-'fJEDf:,J,

=3

with qﬁﬁ[sd:, Dotsd)r Visa) = 0 V wlsd] € IF s sd) € SD°, ¢

where Q = [... Qf,4 - @f,) ..] : vector of multipliers for the constraints of the

congestion control, routing and load sharing fractions.
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Define also the derivatives of L with respect to the congestion, routing and load

sharing fractions at (¢, X*(¢), @*(t), ¥*(¢),P(t)) as

oL* OL(t,X,®,¥T,.P,Q)

= = = (X %(6).8%(6), % (1) P(1),Q(1))
“olsd)] “olsd]

L dL(t, X, ®,¥,P,Q)

2 = y |(t,]{*(tj.@'{t},'1"{ﬁLP{tJ.Q{H]
Pl sd] P r[sd]

oL* oL(t,X,®, ¥, P.Q)

= 0 (6.X*(e), @ (¢), % (£), P(¢),Q(t))
Plsd] “[sd]

Theorem :

Consider the dynamic joint load sharing, routing and congestion control problem
in distributed systems with multiple cooperative classes, with fired initial time tg
and final time t;.

(@*(t), ¥*(¢)) € (RC,LS) s a team optimal solution if and only 1f it solves
the following Optimal Control Problem:

minimize /tf glt, X(t), ®(t), ¥(t))dt

to

with respect to  (®(t), ¥(t))
such that X(t) = f(t,X(t), ®(t), ®(t))
X(to) = Xo

(®(t), ¥(t)) € (RC,LS)

Proof: It follows from the definition of the team optimal solution.O

Necessary conditions for optimality are provided by Pontryagin’s Maximum
Principle. Besides the previously referred books on optimal control theory, some

other books that contain material on Pontryagin’s maximum principle are the

following: Hestenes [215], Arrow & Kurz [12], Tabak & Kuo [476], Boltyanskii
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58], Berkovitz [33], Bryson & Ho [79], Fleming & Rishel [162], Boltyanskii [59],
Leitmann [298], Macki & Strauss [315], Alekseev, Tikhomirov & Fomin [8].

Theorem : necessary conditions

C'onsider the dynamic joint load sharing, routing and congestion control problem
i distributed -systems with multiple cooperative classes, with fired initial time tg
and final time ;.

Let g(t,X,®,®), f(t,X,®,¥), be continuously differentiable with respect to
(X, P, ®) c (R",®,T) VitE [to.ts].

If(®*(t,X,), T*(t,Xo)) = (®*(t), ¥*(¢)) € (RC,LS) is a precewise continuous

open-loop team optimal solution and {X*(t), t € [to,ts]} ts the corresponding state

trajectory, then 3 P(t) : [to,t;] — R™ continuous and piecewise continuously

differentiable vector function, such that ¥V t € [ty, ts]:
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X*(t) = £(t, X*(t), @*(t), T*(t))

X*(t0) = Xo
e — QLa(t)] = @Z?ﬂ](t) =0 V[sd] € SD° ¢
bawﬂ[sd; l
oH — QL (t)] * _f:fsd;( ) =0 V¥ w[sd] € ITf, s lsd] € SD°, ¢
O sa “
HH" | |
— — Qp, ()] * wr:ti](t) =0 vV [.d] € Dy, 1 s.] € 8%, ¢
aﬂfsd | :
OH*
. — Qf a(t) >0 v |sd| € SD°, ¢
Sma[,d] led]( ) = [ ] ~
B Qfa(t) >0 V w|sd] € IIf, 5, |sd] € SD*, c
Ib7 1a) " o
aH — Qf,(t) 2 0 ‘cfrdlEDle]} 5. € 8¢, ¢
81‘}1:3&] | o

P(t) = —VxH(t,X*, ®*(t), ¥*(t),P(t))

P(t;) =0
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o a(t) + o a(t) =1 ¥ [sd] € SD%, c

olad]
:T[.sd]Eﬂ‘“ﬂ
Z vig(t) =1 V [s.] € 8¢, ¢
[.ﬂ']ED[EEI]
ﬂ[sd (\t W5d|( ) 2 0 v W[Sd] = Htrfsd}'-‘ [Sd] & SDC! C

tf;d](t)g[} H_ffrd]EI)r 1 ESC-} C

Proof: The Lagrangian 1s

g b

L=H -+ Z Z Q[Edl * (1 — (;b;[s{f:g Z d”ﬂ[ld] T

¢ [sd]€SDS i sdjEHf d]

.

—

£ Q=1 X Y

¢ [s]eSs D5,

"Wi't-h t-ﬁi[sd]? Eﬁ:r[sd]'-' ’wﬁ;d] 2 0 i'?f ‘?T[Sd} - ]'_'[fsd]? [SdJ - SD y C
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Pontryagin’s maximum principle necessary conditions are:

X*(t) = (¢, X*(¢), *(t), T*(¢))
X*(tﬂ) = :Xﬂ
oL | OH*
" r:-r () =0 . = 0)F ; c* (t) =
0P (40 Pofealt - 5%[5.;{ @hoalt)] = Filaa(t) =0
v [sd] € SD*, ¢
L* - GH
$ 8 (1) =0 = | = Q5 (t)| * 6,4 (t) =0
99 1ua Lk 097 (sd) S w1
vV 7lsd] € IIf,;, [sd] € SD*,c
OL* SH*
— xPia(t) =0 = —QF ()] *¥ra(t) =0
Byt ) i is)(t) o) (1)
V [.d] € Dfs_], s.] € 8¢, ¢
aL* JH*
= —Qf (t) >0 Y lsd| € SD°
0 L) Te(t) 2 sdl € €
aL* OH*
>0 = a1t v wisd| € IL 5, [sd] € SD°,
0P (aa) 5"4’);{3&] Ualt) 2 [sd] rar 18] € ‘
oL* OH*
>0 = —Q5(t)>0  VY[d eD:, [s.) €S, c
OYf,a Mg A € Diyy, Lo
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P(t)= —Vx H(t.X*, &(t). €*(t),P(t))

P(t_f:l =N
oL* x
7y 0 = &5f,q(t) + Y. dalt)=1 V[sd] €SDS, ¢
" -ili] ?r[sd]EH[cld]
gL
= — (0 = Z :,-“F;d](t)_l ¥ [s.| € 8% ¢
Qﬁs-] -d)eDs,
B3t (t)y 0% (t) > 0 v n[sd] € TIf,y, [sd] € SD°, ¢
u:‘[-‘;d](t) =1 v [.d] € D*?”, s.] € S¢, c4
o |

Theorem : suffictent conditions

C'onsider the dynamac joint load sharing, routing and congestion control problem
in distributed systems with multiple cooperative classes, with fized inatial time to
and final time t;.

Let g(t, X, ®,¥), f(¢t,X,®,T), be continuously differentiable with respect to
(X,®, ) e (R*,®,F) VtE [ty ts].

Let (X(t),®(t), T(t)) € (R*,RC,LS) s an admissible pair for the Optimal
Control Problem and H(t,X,®, ¥,P(t)) ts convez 1n (X, ®,¥) € (R",RC,LS),
Yt € [to,t4). If 3 P(t) : [to,t;] — R™ continuous and piecewise continuously
differentiable vector function, such that ¥ t € [to,14]:
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| OH ) |
Haoe o Qﬂd}(t) * iﬂi[’d](t) =) v [Sd] c SDC, o
If'I:Ir:.r[.s-::lf]
OH )
5or — ~ Qa(t)| xipg(t) =0V nlsd) € I, [sd] € SD,
¥ | sd] '
O0H ) _ .
_@ﬂ:id] B Q[-“](ﬂ ® ﬂr[sd](” =0 v [r:f] = D[L}! [S] e SC? -
OH
—O° . (t)>0 V (sd SD*.
061 Qfa)(t) = [sd] € 5
5H |
{f} o o Qf,d](t) }’_ 0 v ﬂ*[sd] — ]'_‘[Fsd]? [Sd] c SDT.':' 3
(i}‘.rr[ad]
oH
G-~ Q)20 Y[deDi, [s]es, c
- [sd} !

P(f} — _?XH(tiii'i’(t)i ‘i‘ff),P(f))

P(tf) =0
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rlsdlely, ,
S drglt)=1 V [s.] €8¢, ¢
dJeDs, |
%E[m}(f]ﬁ ‘ii[ad](t) 2 0 Vv w[sd] € IIf,y, [sd] € SD*, ¢
‘L'T“:sd](f) >0 v [.d] € Df, ;s [s.] € 8¢, ¢

then (X(t), ®(t), ¥(t)) s optemal.

Proof: The proof is similar to that of the necessary conditions. In addition, we

use the convexity of the Hamiltonian with respect to the state and controls.C

Theorem :

Consider the dynamaic joint load sharing, routing and congestion control problem
in distributed systermns with multiple cooperative classes, with fired initial time tg
and final time t5.

Let g(t,X,®, W), f(t,X,®,P), be continuously differentiable uath respect to
(X,®,%) e (R",RC,LS), Vtc< |ty ty].

If (8¢, X, Xo), T*(t. X, Xo)) = (®*(¢), T*(¢)) € (RC,LS) is a closed-loop
memoryless team optimal solution such that (®*(t,X,X,), ®*(¢t,X,Xo)) is con-
tinuously differentiable with respect to X € R™, V ¢, t € [to,ts] and {X*(t), t €

[to,ts]} is the corresponding state trajectory, then I P(t) : [to,tf] — R", continuous

and piecewise continuously differentiable vector functions, such that V t € [to,ty]:
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X"(to) = Xo
| OH"
e~ Qha(t)] ¥ () =0V [sd] € SD",
: ma[ad] | )
| sd] |
aH*

6} fye o QF”H] " ﬂ'f:dj{t) — U H'j [.d} - Dr"], {S,] - SE& C
| 9% sd] _

— G qlt) =0 v [sd] € SD°, ¢
8{;};[.!&} Q[_jd]( ) T L |
aﬁ? — Qfsd](t) :_::' 0 i W[Sd] - Hfsd]} ESC{] = SDE} C
Prlsd)
H* :
8. - QL) =20 vV [.d] € Df,;, [s.] € 8¢, c
Of & :
¥lsd)

P(¢t) = —VxH(,X*, &*(¢,X*, X,), T*(¢,X*, X,), P(t))

P(tfy) =0
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Sa(t) + ) ialt)=1 V[sd] € SD°, ¢

m[sd]€Ilf
[d]EZDFL] Uiy (t) =1 v [s.] €S, ¢
ohag () 51,a(t) 20 V mlsd] € Hfﬁd]‘, sd] € SD°, ¢
Uiy (t) 20 v [.d] € Df, ), [s.] € S, ¢

Proof: The proof is similar to that of the open-loop solution.d
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5.1.2 Dynamic Programming Formulation

In this section, we formulate the dynamic cooperative joint load sharing, routing
and congestion control problem as a Dynamic Programming Problem (DPP). Al-

gorithms for solving DPP’s may be found in books by Bellman [31], Howard [220],
Kumar & Varaiya [274] Bertsekas [37], Ross [406] among others.

Theorem :
Clonsider the dynamic joint load sharing, routing and congestion control problem

in distributed systems with multiple cooperative classes, with fired initial time tq

and final time t5.
(®*, ¥*) € (RC,LS) is a team optimal solution if and only if the following

conditions are satisfied:
t - i
1) / f g(t,X*(s), ®*(X*(s))), ¥*(X*(s))ds = constant

to

i7) 3 X*, P absolutely continuous such that:
H (t,X*(t), 2*(X(t)), ¥*(X(t)), P(t)) — He(t, X(t), B(X(t)), ¥(X(t)), P(¢)) +
+ P() = (X*(t)-=X) <0 ae te€tots], V¥ XeR", ($,¥)<(RC,LS)

P (t5)*(X*(t;)-X)<0 VXeER™

Proof: Substituting the state equation in ii) and integrating it, we get the

definition of the team-optimal solution. O
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Definition :

Consider the dynamic joint load sharing. routing and congestion control problem
i distributed systems with multiple cooperative classes. with fized wnitial time t,
and final time t;.

U'nder the memoryless perfect state or closed-loop perfect state information

structure, (®, 'I’] c (RC,LS) constitutes a feedback team optimal solution solu-

tion if and only 1f 3 V' : [to, t;] * R® — R satisfying the following relations:

V(t.X) = [“' 9(s,X*(s), ®*(s,1(s)), ¥*(5,1(s)))ds <
< [’g(s,x*t B(s,1(s)), ¥(s,1(s)))ds
v (®(s,1(s)), ¥(s,1(s))) € (RC,LS), X € R"
such that Vs & [¢, tf]
X(s) = f(s,X(s), ®(s,1(s)), ¥(s,1(s)))
X(t) = X
X'(s) = f(s,X*(s),®*(s,1(5)), T*(s,1(s)))
X*s) = X

where I(s) = {X(s), X0} or I(s) = {X(7), = < s}.

V(t,X) is the value function associated. with the optimal control problem of
minimizing J over (®, ¥) € LS,RC).

The concept of feedback team optimal solution means that if (®(s),T(s)) 1s
a feedback team optimal solution to the problem during to,tf], is also a feedback
team optimal solution to the problem during [t, /], with the initial state taken as
X(t). So, feedback team optimal solution strategies will depend only on the time

variable and the current value of the state, but not on memory.
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Proposition :
Every open-loop team optimal solution for the dynamic joint load sharing. rout-
ing and congestion control problem among cooperative classes 1s also closed-loop

teamn optimal solution.

Proposition :

['nder the memoryless (respectively, closed-loop) perfect state information struc-
ture, every feedback team optimal solution for the dynamic joint load sharing, rout-
ing and congestion control problem among cooperative classes 1s a closed-loop no

memory (respectively, closed-loop) team optimal solution.

Theorem :

Consider the dynamic joint load sharing, routing and congestion control problem
in distributed systems with multiple cooperative classes, with fized initial time tg
and final time t¢.

Under the memory perfect state or closed loop perfect state information struc-
ture, (®, ‘I’) € (RC,LS) provides a feedback team optimal solution if 3V : [to, ts]=
R"™ — R continuously differentiable satisfying the partial differential equations

oV (t,X) | {(?V(t,lﬂ() }

T — *f t,X.. . Es ,‘I’,‘I‘ =
at c@,@;ﬁ?}%ﬂ.m} 0X e Ry By gl X )
V(t.X « - n :

o éx ) £(8,X, % (1, X), B* (£, X)) + ¢(t, X, 8° (¢, X), ¥* (£, X))

The above equation is called Hamilton-Jacobi-Bellman (H-J-B) equation.

5.1.3 Nonlinear Complementarity Problem Formulation

In this section, we formulate the dynamic cooperative load sharing, routing and
congestion control problem as a Nonlinear Complementarity Problem (NCP).
Define the vector of class load sharing, routing and load sharing fractions as

well as Lagrange multipliers:

Z(t) = o B8] o Birsq sss Dfigi(F) v Wlplt) oo QE5(8) o]”



and the vector of class derivative of the Lagrangian with respect to the con-

gestion control, routing and load sharing fractions as well as Lagrange multipliers:

| i OH OH
VL(t,X(t),Z(t)) = |.. (%‘m —ngsd](t)) (M[ ]—Q‘j,[,d}(t})
L ol | ad

1= Sag®) = D g ] -
#Ead}EHF!d]

oH '
-(ﬁ ,c —Qr,,;m) S D SRR ¥ )
Visd] d]eD,

]

Theorem :
Consider the dynamic joint load sharing, routing and congestion control problem
in distributed systems with multiple cooperative classes, with fized initial time to

and final time t;.

Let g(t, X, ®,¥), {({,X,®,¥), be continuously differentiable with respect to
(X,®, %) € (R",®,¥) Yt € [to,ts]. If H is differentiable and conver in
(X,®,¥)c (RC,LS), VYtE€ to,ts],

then (®*(t), ¥*(t)) € (RC,LS) is a team optimal solution if and only if it
solves the following Nonlinear Complementarity Problem V t € [to,t4]:

VL(t,X*(t),Z*(t)) *Z*(t) =0

VL(t,X*(t),Z*(t)) >0

Z*(t) >0

X (t) = £(t,X*(t), *(t), T*(t))

X*(to) = X

P(t) = —VxH(t,X*, &*(¢), T*(¢t),P(¢))
P(t;) =0

Proof: After some algebraic manipulations, we find that the NCP: VL(Z(¢)) =
Z(t) =0 VL(Z(t)) 20 Z(t) > 0 with Z(¢) and VL(Z(t)) as defined above, is

equivalent to the Pontryagin’s maximum principle necessary conditions. O
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5.1.4 Variational Inequality Formulation

In this section, we formulate the dynamic cooperative load sharing, routing and

congestion control problem as a Variational Inequality Problem (VIP).

Define the vector of class congestion control, routing and load sharing fractions:

. : T
(B(2), (2) = [+ E5pui(t) v D pag(t) oo UEug () o]

as well the vector of class derivatives of the cost function with respect to the

congestion control, routing and load sharing fractions:

0H
0

VH(t,X(t),®(t),¥(t),P(t)) =

Theorem :

2

r[:djEnfldJ

0H OH
005,a Oy

=

Consider the dynamac joint load sharing, routing and congestion control problem

in distributed systems with multiple cooperative classes, with fired initial time t,

and final time t;.

Let g(t,X,®,¥), f(t,X,®,¥), be continuously differentiable with respect to
(X,®,¥) € (R",®,¥) VYVt € [to,ty]. If H 1s continuously differentiable and

conver in (X,®,¥)c (R",RC,LS), Vte lto,ts),

then (®*(t), ¥*(t)) € (RC,LS) s a team optimal solution if and only if it
solves the following Variational Inequality Problem Y t € [to,ty] :

VAH(t, X*(t), ®°(2), ¥*(t), P(2)) = (2, ®) — (2°(¢), ¥*(t))) > 0

v (®,¥)e (RC,LS)
X*(t) = £(¢,X*(t), ®*(¢), T*(¢))
X*(to) = Xo
P(t) = —VxH(t,X*, ®*(¢), ¥*(¢),P(¢))
P(t;) =0



Proof: If (®(#), ¥(t)) is a local minimum for the following minimization prob-

lem
inimze [’ g(t. X (), ®(t), T(t))dt
with respect to (tIn’(t), P(t))
such that X(t) = f(¢,X(t), ®(t), T(t))
X(to) = Xo

(®(t), ¥(t)) € (RC,LS)

and g is a continuously differentiable convex function over the nonempty convex,

closed and bounded set (RC,LS), then ¥ ¢ € [to, tf]:

Y, 2. { . * (P51ed] — Posa)(t)) +

¢ [sd]eSD* a¢§[ad]

oH*

>

* (Drpsd) — Prisq)(t)) +
rlsdleTlt,, O (sd]

oOH*
aw.c.!d]

« (F w[ad](t)} >0 V(& ¥) e (RC,LS)
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Another equivalent VIP formulation is the following Theorem:

Theorem :

Consider the dynamic joint load sharing, routing and congestion control problem
i distributed systems with multiple cooperative classes, with fired initial time t,
and final time t;.

Let g(t, X, ®,¥), f(¢,X,®,¥), be continuously differentiable with respect to
(X,®,¥) € (R",2,¥) VYVt € |to,tf]. If H is continuously differentiable and
conver in (H, ®,¥) € (R*,RC,LS), V¥ t¢& [t t4],

then (@*(t), ®*(t)) € (RC,LS) s a team optimal solution if and only if it
solves the following Variational Inequality Problem WV t € [tg, t4]:

VL[, X*(t),Z%(t))*x(Z—=Z*(t)) >0 VZ>0
X*(t) = f(t,X*(¢), ®*(¢), T*(¢t))

X*(to) = X,
P(t) = —VxH(t,X*, &*(t), €*(t), P(¢))
P(t_f) =0

The NCP: f(z*)*xz*=0 f(z*)>0 z*>0
and the VIP: find z* such that f(z*)*x(z —2z*) >0 Yz > (

are equivalent.O
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9.1.5 Maximum Principle for Separable Cost Functions

In this section, we derive the first order necessary conditions for a team optimal
solution on the path flows, when the cost function of each resource depends only
on the flow on this resource.

According to the team optimal solution definition, each class ¢ minimizes its

cost function g given the optimum decisions of all other classes.

2
b /‘f g(t, X (¢), ®(1), ¥(t))dt =

Z/” 9ii(t, Xij(t), Aij(t)at +

1] to

K th:fgi(fﬂxf(t%w))dt -

L,
+ Z/: Golsd)(ts Kofsd)(t)s Aofsa)(t))dt +
[sd] ©7°

Ly
+ Y gt Xg(t) Apg(t))dt

v W L
i

with respect to  (@(t), ¥(t))
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such that

k

Xiat) = gt X(t). 8(¢), (1) Vij, [sd] € SD, &k
X5 q(t) = 5,46, Xi(t), B(t), B(1)) Y i, [sd] € SD*, k
Xk a(t) = (. Xona(t), 8(), T(t)) VY [sd] € SD*, &
Xfana(t) = fapgt:Xia(t), 8(¢), ®(t)) V[sd] € SD*, &
EXFalte) = Xipao v ij, [sd] € SD*,
Xialte) = X, V1, [sd] € SD*, &
Xowag(te) = X0 ¥ [sd] € SD*, &
Xtapate) = Xfynae Y [sd] € SD*, &k

Sopa(t) + D Pig(t)=1 V[sd] € SD

[sd]eIlf
> wEa(t) =1 Vv [s.] € S°
Ld]eDf,
Bosd)(t)s Prpea)(t) =0 vV wisd] € IIf, , [sd] € SD°
Yha(t) >0 v [.d] € Df,;, [s.] € S
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Pontryagin's maximum principle necessary conditions are YV t € [tg,ts]:

Xk a(t) = 5 0 (6X5(0).80(8), B (t) V5, [sd] € SD*, &
Xk () = 5,46, X5 (), @°(t), T*(t)) v i, [sd] € SD*, k
Xf;[;d( ) = (6, X0 (1), B°(2), ®*(t)) VY [sd] € SD¥, &

X (t) £ (6 X7 g (), @°(¢), ¥ () V¥ [sd) € SD, &

Xialt) = X0 v ij, [sd] € SD*, k
Xiglte) = Xiae Vi, [sd] € SD, k
Xhalte) = Xia0 VY [sd] € SD*, k&
Xtupa(te) = Xfagnao V¥ [sd] € SD*, k
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[ Ogpa(t. X3, (t). B%(2). E*(2))

0Dy ya)

=5 Zpi[:d] * ?qﬁ‘ fﬂ[sd](t Xﬂ[!d( L‘Iﬂ{t)* ‘P‘{t”_

fm'](t] * ;rad}{t) =0

Y [sd] € SD°, ¢

_|_

Z 0g:;(t, X5;(¢), 2*(¢), ®*(¢)) + Y Ag:(t, Xi(t), ®*(¢), ¥*(t))
. 17 'ﬁ{i}wlsd 1 ﬁqD‘:rEJd]
30 5 S Peat)* Ve Loa (L X2, T (0)+
YT SPE (1) = Vg, By (1 K5 (2),2°(0), 2°(0))-
ke [ad‘] 1
—Qf, ()] *x 077,4(t) =0 v wlsd] € IIF 4, sd] € SD°, ¢
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5 28t X5(0, 80, B(0) - 0alt, Xi(0). B°(4), @*(8)
“[s

|

5 M = ol ]
+5 Iisa(ty X3ppgy(2), @7(8) *(2))  Ogra(t, X[ y(t), B*(¢), T*(2))
aﬂlj [sd] aﬂ[ad]
ZPEC *?‘J[‘:ijfs:d](t?X:j(t)‘@*(t)‘- ‘I"(t}}_F

L.!u'] 1]

+§ > D P (8) < Ve B8 (£, X5 (1), %(8), T (1)) +
[sd] !

+2Pksd] * II1T':’7"-{'[ ]fﬂr#d(t X*[ad( )?‘I'*{t}ﬁlpl(t))_k

_ZZP {t #Vﬁ,: fk d}(t X‘d] t), ®(t), ¥(t))—

vV [.d] € Df,;, [s.] €8S, ¢

-+



Bgteat(t X g, (£). B (1), T*(8))
aqﬁ;_:d]

——

ZPo[ad -d}::m [sd(t Xn[sd]( J 'I'.( )s Wt ))

-Qfﬂ]{t] >0 vV [sd] € SD€, ¢
8gi;(t, X5(¢), 2*(t), T*(¢ 0g;(t, XI(t), ®"(t), ®*(t))
—|— —+-
z'zj @d};‘ ad] Z a{ﬂw ad]
T y‘ Y y:P”[_, d] 1,r[ ]fi[, d' t{ :_f,r(t)'*@*(t):‘l"(f})"'
ko [a'd'] 1

+5 T TP (t) = Ve g fanl6 Ki (0, 2°(6), 2°(0)-

ke Lsd] 1

Q¢ 4(t) >0 V n[sd] € IIf, ,, [sd] € SD°, ¢
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3

'],E I
1) dv [ad]

+§ghd](t~1{;|,d](t)~ @‘(t)* 11,.[‘{)} i

aw [cs d|

*TY‘TP ' #ch fjlr

i U[-‘ .' “lad]
k [Jd] 1]

DIDIDI L INOEL N3

k [_,d] 1

0gij(8. X5, (t), B (1), T*(t) | gilt. X1(1). *(2), W*(¢))
I

——

-
Ol

!

D1t X7 4(8),8*(1), ®* (1))

81&' i:a d]

5 Vol ](t‘x:‘;(t)u 'I'*(t)'r ‘F.(f)}‘F

(8 X7 (t), 27(t), ¥7(t))+

+ZP9[¢£ o w[c fﬂ[sd](i X;.m']( J!‘I,.(i)v'l"(t]J_'I"

+EZP[d[ad * Vg, fakd]

~Qf,)(1) 20 v [.d] €

(tﬂxr_d}(t\]‘: 'I‘J‘(t)}i’*(t]}—

Df,y, [s.] € 8 ¢

+



PEa(t) = Vi gi(6. X5, (1), B (1)) -

17| sd)

~% T Pifa(®)* Vg Byt X 70, ()

o 7[ sd]
¥ i, [sd] € SD*, k
Piri(t) = —Vxe gilt, X}, @°(2), T(t))-

i[ 3]

=3 SR (8 Vs £7 (6, X0,87(8), B7(2)

n (s e
Vi, [sd] € SD*, k

Pira(t) = —Vxr  gua(t, X, 8°(), T5(t))-

of s d]
‘ZPG[,.&} * Ve Lot Xopa, 27(2), ¥7(¢))
V [sd] € SD*, k&

d][sd](t} = _vl{* gf-d](tﬁxr,d]w@t(t)u‘Iﬂ(t))_

[-d]{ad]

_ZZP ) * VXt L a(t X, @7(2), B(2))

V [sd] € SD*, k
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“::"fﬁfm}
D Yi(t) =1 V [s.] € 8% ¢
4eDp,
Gotaa)(t)s 9510q(t) 20 vV wlsd] € ITf, ;) [sd] € SD<, c
Uig(t) 20 Vv [.d] € Df,;, [s.] € 8%, ¢

The partial derivatives of the cost function g(¢,X,®,W¥) with respect to the
path fractions ¢, , can be written with respect to the link flows A% and node

flows AS:

0gij(t, Xij, 8, ¥)  0gi(¢, X5, Ayj) 0N

*

5{1’5;[,&] OAS; @ﬁf’i{:d]
0g:;(t, Xij0 Aij) 5 i
=7 e, (a®) +960(8) * Yg) * Lijentua(t)

0g:(t,X;, ®,¥) Jgi(t,X;,A;) O
= *

0o, [sd] O] OPfsd)

agi(tﬂ}:iﬁ AI) c [ c
= * (a(®) +70)(1) * ¥fia) * Liesa(t)

ag[sd}(tﬁ X—n[ad]a (I".r ‘I’] agT.:d] (tﬂ Xn[sd] ’ Aﬂ-[ad]) 8}";[3&]
- *
aqﬁg[ad] a}‘gf_sd] aqﬁgisd]

ag[sd}(ts Xa[ad}a Aﬂ[!d}) & " 1
o af}‘ﬁ[ﬁ] * (T[sdj(f) - "f[,_](t) * ’*.L’[m:])
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0gi;(t.X,;. @, ®)  8g;;(t. X5 Ayj)  OX

OVfya B ON}; # Wi
8gf'{th{'1Ai-) - O
= ¥ e * Mo (t) * B7a * Lijenina(t)
”["d]eufsdi 1

9g:(t, X, 8, ) _ 6g:(t.Xi A) DX

* =
81&-'?3&] @}\f ﬁﬂ-‘ﬁ,d]
agi(nghAi) e c¥
= ¥ e Vel () * Onlaq) * Lienioa) ()
r[ad]EHi"‘d] ?

8g[sdf(t} Xvu[sd]a @1 ‘I'] 39‘[3&] (ta X‘ﬂ[!d]! An[sd]] " 6)‘;[.-1&]

—

awf&d] @AZ[Jd]’ au&f&d}

- 8‘9[;&] (ta Xa{sd}a -A--::ni:sd] )

* ‘Tf:a](t) ¥ Qﬁ;r,d]

O aa)
0914t X1a), B, ¥)  9g14)(t, Xpa)y Arg)) 0Alg
OV 2P O%foa)
agfd(tﬁx.dﬁﬁ d) e
= ] < * Vi (t)
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Then Pontryagin’s maximum principle becomes ¥ ¢ & [to,¢,]:

Xa(t) = f5,4(6X5(0),8%(t), T*(t)) Y ij, [sd] € SD*, &
Xkalt) = f5,06,X:(t),8°(t), ¥*(¢)) VY C, [sd] € SD*, &

Xk o (2) £ (6 X g (t), 2%(2), ¥*(t)) ¥ [sd] € SDF, &

Xbpa(t) = £,0(6X0 (), 8*(t), ®*(¢)) ¥ [sd] € SD*, k

Xfﬁ,d]ftﬂ) = Xf}[mj v ij, [sd] € SD*, k
Xgalte) = Xhao Vi, [sd] € SD*, k
Xehalte) = X0 V [sd] € SD*, &
X{apalte) = Xfgpae Y [sd] € SD*, k
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Ogtaa)(t- X2, a(t). el (t)) | |
{f};f ; * (Vaa)(t) + 75 (8) * P (2))+

+ 2 Po * Ve B8 Xia (1), 8°(t), T*(2)) -
_Qfad](t) 5 ﬁazrsd](i} =0 A [Sd] < SDC’ ¢
0g:i(t, X;(t), Af;(2))

Z )¢, * (Trgﬂ(” +T|.-‘ ( } Irfil[_y:,{,]( )) * ]-ijErr[sar](f)+

e

0g:(t, X (t), Ai () , . " ”
+ Z E3Y: * (Voq)(8) + [ () * Yogy(t)) * Lienpeq)(t)+

&7 Z Z Zpu[a rl] ¥ vfﬁ‘ fz'u 'd ](taxzj(t}ﬂﬁ.(t)?@*&))_'_

w[ad]
k (44 ] #

+20 3 2P () Ve, B (8,X5(2), 87(2), ¥°(2))

k [.sc..-‘] )

—QLag(t)| * &51,q(t) =0 V n[sd] € IIf,;, [sd] € SD°, ¢
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Bgi;(t, X25(£), AL(t))
E E J 6J)t'§’. . * qrirs(t:] o mrzad]{i}) * li_J'E?r[sd'}{f]_!'
1.? TIJd]EH[ d i)
Ogi(t, X*(t), Ar(t)) 2
+ T‘ T = ( 5)\‘: ( * 'J’l, ]{t) * ﬂ'.:d']( )) * ltErlsd?[t}_I_
tor[sd]eIIF i'

+39[5d](f~xz[,d;{fﬁ ofsd)(t))

[

AStsd

+ |
ﬁk[cﬂ

+T T 5_: IJlJﬂ-’J *?”;d f:;”d (f-X?j[fL@*(f):‘I’*(f]H

k [s'd']

F30 30 YU (8 % Ve £E (8, X3 (2), 8°(2), °(2)+

k [sd] 1

+Zpk[sd * Tiﬂ:’d fj.‘!‘d]{t Xa[ad]( )7@‘{tj?‘1‘*(t))+

k.c * " .
+ ZZPld][s ) % Ve, apa (6 Xig(t), 8°(2), B°(t)) -

—Qf ()] * ¥fy(t) =0 v [d €Df), [s] €85 c

-
_..1]

on



0g1aa)(t, X3 g () Adpg ()
HNC.

::aad

« (1) + (1) = Uiz (£0)+
olsd]

TZP:[E * Vo fk[ad]{ti}{;i:ad](t}a@*{t}a‘I"(t})‘“

—Qhq(t) 20 v [sd] € SD¢, ¢

0gi(t, Xi(t), Ai(t))

" Z OAS i (Tfﬂdl(ﬂ T 7&-](“ * ¢f:d](f” * lz’E:rr[sd](t)—i"

R 2P () * Vg T (6, X35(2), 8°(8), () +

i} 1]
;CC c * * =
o T ZE]ZP ‘i’ii,d;fiia'd’}(taxi(t)ﬂ ®7(t), ¥7(¢))-
~Qf,y(t) 20 v mlsd] € IIf, ), [sd] € SDF, ¢
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Bg;(t. X3;(t). Az(t))

Z Z a)\e * "n'[s {f) Gfr.sd}{t” ltjﬂfrlsd {t}_i_
1] “[’J]EHTEH:: 1]
O0gi(t. XI(t), Al (t)) . .. ..
i D e * V51(8) * 931,4)(2)) * Lienfsa)(t)+

i wlsd]eIIF,

B4t X1, (8) Al (1))
g

ofad)]

* Y (8) * @5, (L)) +

- « 7, 1(t)+
X 4 2]

+Z Z ZPU[, () * Ve B (6, X5(8), 82(2), B*(2))+

+2 T YP“:;] * Ve Lha (6 X5 (2), °(2), B (8))+
+ZP:}[5d] * vtﬂ'-l fksd](t Xﬂlsa’]( )?@*(t]T‘I’*(iJ)-'-
+ZZPW ) * Ve (6 X g(2), ®°(8), T (8))—

-Qf,)(t) 2 0 v [.d] € Df,}, [s!]

(M

= S

277



5 c.k .
P;‘J[,d][t} = —Txfmd]gﬁ(t.xa. d*(t), T*(t))—

—Z ZP (8 * Ve A0 (8, X5, 8%(2), B (¢))

plad] W]

V ij, [sd] € SD*, &

Pc[fd](t) _TX‘F Q:(fwx::i'*(f)a‘l"”})“

t[.ld]

=2 2PN ()« Ve 106 X7, 8%(2), (1))

thd
" sd]

Vi, [sd] € SD*, k

Pioalt) = —Vxi gt Xi,g 8*(t), ®°(2))-

of sd]

_ZPaLad T*?X“ fnm’](t X‘ sd}?@‘( ] \Il’"(t))

_"ZZ f.gll[sd( :’*V}E[*d” d]f[“d][’,d](t!}{'[‘_dj,@‘[t]allr*(t)}

V [sd] € SD*, k
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Ofa(t) + D OT.at)=1 V¥ [sd] € SD, ¢

U

"lsdelTy,

;c ]wlsd] v [s.] € 8% ¢
qﬁgr_!d](t}, Pilay(t) 2 0 vV wlsd] € ad] sd] € SD°, ¢
Ufry(t) 20 vV [.d] € Df,;, [s.] € 8¢, ¢

Next, for each class ¢, we define the length for the rejected flow [sd], the length
for the path n[sd| and the length for the source-destination pair [sd]:

c,team ‘agsdi(tﬁxaad (t]ﬁﬁua (t)} c . =
Loy () = -2 {;Ai[ ; ol (Vioa) () + 7115 (2) * ¥g(E))+

"'ZP: * Ve fagsa](faxa[sd}(f]s‘I’(f)ﬁl'(t))
ke

o sd]

v [sd] € SD°, ¢

279



0g:i(t, Xii(t), Ay;(8))

ETC;"EEJZEEm(t} = z . a/\c = " [’?E:sd"{f) a5 Fr?:sl(t} * EI!f;d]{f” * ]-z'_.r'E.-riad][‘t}_!'_
1] ]
Bai(t, Xi(t), Ai(t)) C )
T Z a)\" ¥ (T[ad](t) i ‘T[J](t) * ﬂ}[sd](t)) " liEﬂ[ad]{t)_;_
3020 D P (8) % Ve B (6, X5 (2), ®(2), T (2))+
k [s'd'] u

+ 3% TPE.-. ()% Ve £5000(8,Xi(t), @(8), B(t))
k [,d] 1

V misd] € ITf, 4, [sd] € SDF, ¢



U YD o
i]

[Ce—

1] T ad|E H;::d]

,:jff} Tsd]{t}}*lfJEfsd{fll

8 1 taxi L '.*A-t' t c ¢
+y ¥ PSR e 0% 65pg(6) * Lieatua(6)

t mwlad]e Hf"d]

+8g[sd](t‘lx [Jd](t}?-&ﬂ[ad](t}) c

OAg(ad]
Ogr.a)(t, Xy q(t), Arglt)) -
- : * ’TC,_ (t]-|—
(?)‘[d1 [s.]
T2 D0 D P (8 ¢ Ve £ (8, X5(8), B(8), B(2)+

k [4'd'] W

+ZZZP§’: ) * Ve, £50 (6, Xa(t), 8(1), B(2))+

Zpa[ad] vﬂi’f’ ]fa[sd](tixﬂisd](t)?@{tJ! \I’(t”_}_
+ZZP;‘C d] #?t,ir fk] d](t?x[.d](t}ai’(t)'.rq’(t))_

.d] € Df,;, [s.] € 8% ¢

External arriving flow at a source is assigned to the destination that has the
minimum length from the source. However, this flow may be rejected if the length
of rejecting it is less than the lengths of the paths to its destination. If it is
accepted, then it is routed to its destination via the minimum length path.

In the next section, we will derive the same conditions by an alternative way,

and we shall state the above ideas more formally.
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5.1.6 V.I. for Separable Cost Functions

Equivalently, the team optimal solution definition, each class ¢ minimizes its cost
function g given the optimum decisions of all other classes. We first solve the rout-
ing and congestion control problem assuming that all other classes act optimally

for themselves. So, class ¢ first solves the routing and congestion control problems

Minimize ftf glt, X, ®(t), ¥(t))dt =
= Z/:f g (8, Xii(t), Ay;(t))dt +
“t
ca Z/ gi(tvxi(t)uﬁi(f)]dﬂ +

1

by
iz Z/; gg"d](t!Xﬂ[sd](t}pﬁa[sd](t))dt -
[d] *7°

ty
+ Z/; gild](t,x[ﬁ](f), A—[,d](t))dt
[ogl ™ ™

with respect to  P(t)
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such that

Xrna(t) = Aot X)), 8(8),®() V¥ ij, [sd] € SD*, &
Xha(t) = fhy(t,Xu(t), 8(¢),2(t)) Vi, [sd] € SD¥, &
Xsalt) = £5,4(t,Xq(t), (), ®(t)) V [sd] € SD, k

N
B,
r—
R
—
L
R
!

f[%d][:ﬂ’](tix[.d]l’t}!@(tjﬂT(t)) v [sd] € SD*, k

Xialte) = X V ij, [sd] € SD*, &
Xtglte) = X, v 1, [sd] € SD*, k&
Xkalto) = X0 v [sd] € SD*, k

Xeapag(te) = Xfapae v [sd] € SD*, k

Goreq(t) + Y Grsa)(t) =1 ¥ [sd] € SD°

wlsd]E Hf,di

Goraat(t)y Bopeq(t) 20 V wlsd] € IIf,, [sd] € SD°
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The necessary optimality conditions are ¥V t € [to,ts):

s [ Bg(t.X"(t). @°(t). ¥*(1))

odie8Ds | 0P * (950a — P5hg(E)) +

¢ 5 AR S EE)
sfsdietrs,, 9%lad) * (Frea) — Dolaa)(t)

} >0 VY & cRC"

such that
Xk a(t) = £t X5(0), @°(2), ®%(¢) V45, [sd] € SD¥, &

_—
w ®
B
——
L S
e
I

£ 4(6,X1(t), 2*(¢), ®*(¢)) Vi, [sd] € SD*, k&

Xkea(t) = 55X 0La(t), ®7(2), ®*(t) V [sd] € SD, &
Xfoa(t) = fna(tXig(t), 8%(t), ®*(t)) V [sd] € SD*, &
Xihalte) = Xiuane V¥ ij, [sd] € SD*, k
X%alte) = Xia0 ¥ i, [sd] € SD*, k
Xkralte) = XEa, V [sd] € SD*, &
Xtaa(te) = XEanae v [sd] € SD*, k
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- R

PzJ‘[:d]{t} = —T:(f}[,ﬂg;j{th:ﬁ@‘{f].q_"{t”—

= D Vxr PR (8) % £ (8. X5, B (2), B (¢)

17(sd] U[":f] -”- d'
" [s'd]

¥ 17, [sd] € SD*, k

Pig(t) = —Vxe ai(t.X]@%(t), T(t))-
“Zn: E}Txﬁmlpc:dl( ) * f;ﬁ;d,](t,}{;,f]?"‘(t),‘-l"(t))
Y i, [sd] € SD*, k
Pitg(t) = —Vxr gua(t, Xy, 2°(), 2°(t))-
—Z?x* oiea) (8) * £0,0 (8, X5, ®°(8), ®*(2))
¥ [sd] € SD*, k
Plipa(t) = —Vxr,  ga(t, X7y, (), ¥(t))-

2. vaﬂ;{-dip[d[sd]( )+ 8 (8 X, B7(2), 7 (2))

”’[:.

VY [sd] € SD*, k
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2. %

(t) =1 V [sd] € SD°

v wlsd] € TIf,y, [sd] € SDF
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We can decompose these conditions for each source-destination pair [sd]| £ SD°
Vi - [t{], tf]

Og(t X*(1), 8(4). ¥ (1)) o e
B¢ * (Bopea) — Poag)(8))+
-a[.sd,'] !

Og(t, X*(t), ®*(t), ¥T*(t))

2

* (@1 — Oila)(t)) =0 ¥V &° € RCS

rlade I, , 0%ried "
such that
Xkea(t) = frg(6,X5(t),8(2), ¥*(t)) Y ij, [sd] € SD¥, &
Xkg(t) = fa(6,X:(t), (), ¥*(t)) Vi, [sd] € SD*, k
Xiagt) = £5,0(6X0(0), 8(2), ¥*(t)) V¥ [sd] € SD¥, &
XFnag(t) = gt Xiy(t), (), ¥ (t)) V [sd] € SD*, &
X?ﬁsdj(tﬂ) = X?j{;d},u v ij, [sd] € SD*, k
Xialte) = X Vi, [sd] € SD*, k
Xitalte) = X0 V [sd] € SD*, &k
Xfapalte) = Xfando vV [sd] € SD*, k
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s 1L
P 1l ad] { t }

Piia(t)

‘i’;‘[:d] (t ) +

¢Z[,d] ( t ) 9

— _?x.h;hd]gii(t*.x:jt‘i’t(t]ri[ﬂ:{f”—

_Z \T‘Tx
" [s'd']

1] ad]

|

1ot (8) * Bt

1718

vV [sd] € SDF, ij, k

I

[ sd]

=35 2.5 VKL,
n[s'd]

1] s

v i, [sd] € SD*, k

~Vxe gt X], @°(¢), T*(¢))-

1.[5 d

2 o

1)

= —?xﬁ[.qglaﬂ(taxz[ad}a‘I"(f]a‘l'*(ﬂ)—

v [sd] € SD*, &

2*(¢), ®*(t))

e (8) * £, (£, X0, 82 (8), B (2))

* -:-tm:if(t X. @-( ) ‘I’*(t):]

s ——Txh g[ d}(t X[d};@-(t) ‘I”( )]

=3 Z"‘T”xrﬂ o F Ldlsa)(t) *

”’[5.

V [sd] € SD*, k

2. il =

Tr[-'!d]E HE:”‘]

[Sd] = th]

£ e a (B X B7(2), ¥7(2))
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Theorem : Routing

$ha(t) >0 only if LG (8) = min{{EE™ (). min{IiA™ (0}

Oisa)t) =0 0.W.

! ;Ld}(t) e Z {p.:[sd](t} =1
r[sd}&ﬂfld]

¥ w[sd]| € IIf, s, sd] € SD°, ¢

and satisfies the partial differential vectors for the state and the costate vam-

ables.

Theorem : Congestion Control

Flow 1s not admatted into the network only if its rejection length 1s less than

the minimum length path to its destination:

0,a(t) >0 only if 157" (¢) = min{l5™ (), min{ L™ () }}
l p|sd]
@:.Ead] = U 0. .

cr[,s::i]{ ) + Z frTsd](tJ =1V [Sd] € SDC! ¢
[ sd] EH‘ d]

and satisfies the partial differential vectors for the state and the costate vari-

ables.
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Having found the optimum routing and congestion control decisions, we proceed
to solve the load sharing problem for class ¢ assuming also that all other classes

act at their optimum decisions. So, the load sharing problem for class c is

minimize f” g(t, X (¢), ®*(¢), T (¢))dt =
to

+ 3 [T et Xu(e), At +

tf
y th g[sd](t:Xa[ad](t)jﬁg[ad](f])dt -+

[sd] ©

tf
T %];u gr.a)(ts Xpa(t), Apg(t))dt
d

with respect to ¥(t)
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such that

Xhoa(t) = ffL,q(6,X(0), 8(¢),®(8)  Vij, [sd] € SD*, &
Xeagt) = f5 a6, Xu(t), 8(t), B(t)) ¥ 1, [sd] € SD*, &k
Xha(t) = fha(t, Xopa(t), ®(2), ®(¢)) ¥ [sd] € SD, k
XEpa(t) = o a(6Xia(t), ®(2), ¥(t)) ¥ [sd] € SD, &
X?j[ad}(tﬂ} = X?j[sd]ﬂ v ij, [sd] € SD¥, &
Xiglte) = Xia Vi, [sd] € SD*, k
Xhalte) = X4 ¥ [sd] € SD*, k

Y [sd] € SD*, &

P4
A
By
o
B
—
e
=
s —
I
>
Rt
By
"
B
o



The necessary and sufficient optimality conditions are ¥V ¢ € [tosts):

"(ﬂfgﬂ'—*fﬁbﬂt)) >0 VW¥eLS

¢ ﬁﬂrfad]
such
Xﬂct (t) = + X. . . .- e
17]ad] ad]( { ) ® (t:]'-"I' (t}) \i?'t.}', [Sd] € SD ) k
7 Lo s * * .
Xig(t) = g, Xi(2), 8%(t), (1)) i, [sd] € SD*, &
Xona(t) = £l (6, X (), @*(2), ¥*(t)) V [sd] € SD*, &k
Xioa(t) = fna(t.Xig(t), ®(t), ®*(t)) ¥ [sd] € SD*, &
kew
Xalte) = X&.a0 Y 17, [sd] € SD*, &
X:tad]( ) — X:F[ad],ﬂ HIT [Sd} S SDkﬁ k
ng;d](tﬂ) == Xﬂf.-!d] H [Sd] E SDk, k
Xiea(te) = Xfaian v [sd] € SD*, &
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Piagt) = —Vxu 05t X5, 8%(t), €*(1))-

i cn n .
'Z ,T xe Prrn(8) < £ (8, X5,

" [s'd')

YV ij, [sd] € SD*, &

®7(t), ®(¢t))

Pty = -Vxr  gi(6, X7, @°(¢), ¥°(t))—
—Z Z Vs P (t) * £2,00(6, X5, @%(¢), B*(t))
Y 1, [sd] € SD*, k
Piaa(t) = —Vxr gt X5y, 8°(t), L*(2)
_va,, P (t) = £,q(¢, X5, 8%(2), ()
¥ [sd] € SD*, &k
Plina(t) = —Vxr, It X g, B7(), ®*(¢))-

_-Z vakd][.d] d][.sd]( ) f[’fd]{,’d](t:'xid]util*(f)ﬁ

Nl

Y [sd] € SD*, k&

> Yit)=1 V[s]ese

ﬂ[,d][ ) 7 [Cf} - Dfa.]’ [S.] - 5¢

v (t))



We can ' | ' '
decompose these conditions for each source node [s.] € S V't € tg.t41:

5 Og(t, X*(t). ®°(¢). ¥*(t))

« (U - ¥g(t) 20 V&€ LS

Ld]eDf, | EM [s4]

such that
XEa(t) = 5 (4, X5(0), 8%(t), ¥ (t))  Vij, [sd] € SD*, k
Xkalt) = £5a(6X5(t), (1), ®*(t)) Vi, [sd] € SD*, &
XEa(t) = £ (8, Xy, q(8), ®°(8), ®*(t)) V [sd] € SD*, k
XFbpalt) = gt Xig(t), @%(t), ®*(t)) V [sd] € SD*, &
XSalte) = X&nao VY 17, [sd] € SD*, k&
XEat) = X0 Vi, [sd] € SD*, k
Xkalte) = X&.a, Y [sd] € SD, k
X[d,m( 0) = Xﬁd][ad].l} v [sd] € SD*, k
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Pf_jf&d]{t) == _Txh;‘d]gi}(tﬁxiﬂ‘I)-{fjlf ‘I'l{fj}_

'Z Z TX;I d] :;T:’::"f(f) % f;j;' (t X:.?’ (1), ¥(t))

Y ij, [sd] € SD*, k
Pila(t) = —Vyxe gilt. X!, &*(t), B*(t))—

[d]

3 3T U PO () # £7 (8, X1, B0(E), T (E)

:[:d] 14 a:f]
nofs'd']

Vi, [sd] € SD*, k

Pilalt) = —Vxe giq(t, X, 8°(t), ¥*(t))-
—TV}H o Potoa)(t) * £ofsq (8, X5, ®7(8), ¥7(2))
¥ [sd] € SD*,
Piea(t) = —Vxr, gt X[y, (1), ®°(¢))~

*Z va[ﬂr o F Lo (t) * £ (8 X g, B7(2), B (2)

v [sd] € SD*, k

>, Yy(t)=1 V[s] €S
_.d]eDf__]

Uee(t) > 0 ¥ [.d] € D,



Theorem : Load Sharing

For each source, there must be flow only to destinations whose length 1s mini-

maurr,

Ui (t) >0 only if frazam*(t} 1}51;1]1{3':5:??“*&)}

-1;1["";d](t) =0 0.W.

Z lf’f:d]( —IV[GHED , [s.] € 8% ¢
dJ€SE,

and satisfies the partial differential vectors for the state and the costate vam-

ables.

Thus, in this section we have formulated and solved the load sharing, routing

and congestion control problem as a team problem among multiple cooperative

classes.
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5.2 Nash Equilibrium Solution

In this section, we formulate the dynamic join load sharing, routing and congestion
control problem on the path flow space as a non-cooperative dynamic Nash game
among competing classes.

Customers of each class try to use the resources of the distributed system for
their own benefit, ignoring the inconvenience that they cause to customers from
other classes. Since the behavior of each class is similar to that of any other class,
i.e. to operate optimally for its customers. next we consider customers only from
class ¢, and the effect of customers from other classes on them.

After the static non-cooperative games by Nash [347|, dynamic non-cooperative
cames have been investigated and are presented in books by: Isaacs [231] Blaquiete.
Gerard & Leitmann [55] Friedman [173] Case [87], Rosenmuller [404], Mehlmann
328], Krasovskii & Subbotin [265] among others.

Next, we briefly review research on dynamic Nash games:

Berkovitz [34] obtains necessary conditions for zero-sum differential games.
Sarma, Ragade & Prasad [425] introduce dynamic n-person noncooperative dy-
namic games and provide necessary conditions. Case [88] provides sufficient condi-
tions and use dynamic programming arguments. Stalford & Leitmann [459] discuss
sufficiency conditions for dynamic Nash games.

Sandell [417] proves that for deterministic nonzero-sum games any open-loop
Nash strategy is also a closed-loop strategy. Williams [513] obtains sufficient con-
ditions for the existence of Nash equilibrium and proves that a class of linear-
quadratic differential games have equilibrium point when the duration of the game
1s sufficiently small.

Papavassilopoulos [374| proves existence and uniqueness of the solution for
discrete-time linear-quadratic Gaussian Nash games with one-step delay obser-
vation sharing pattern. The solution is also linear in the information. Tu & Pa-
pavassilopoulos [501] consider discrete-time linear-quadratic Gaussian Nash games.
They show that better information is beneficial to all players if the number of stages

of the game, or the number of players, is larger than some bounds. For two-person

2
o
-]



zero-sum games, better information 1s beneficial to the player who has better ma-
neuverability. Basar & Li (26| derive conditions for existence and uniqueness for
stochastic linear-quadratic differential games. They also provide an algorithm for
an 1terative distributed computation of the solution.

When the classes are in equilibrium, no class can decrease its cost by altering
its decision unilaterally. Next, we give the definition for a Nash equilibrium [27],
for the join load sharing, routing and congestion control problem on the path flows.

Definition:

A vector (®*,¥*) € (RC,LS) 15 called a Nash equilibrium for a ('-class join

load sharing, routing and congestion control problem if and only if

T ) < inf Y TTT T
‘I;].tj --,.‘I’“, ‘I’C' S ‘I,I‘_“‘I@c*’"”,;,tﬂt
¥! g LS!
Bl L B L DO Hl* .. P, ... C"
JC( 1:-. ce C# } & inf Jc( 1 o | C }
e = LS°

-
)
|

i-I]_f JCI'( LN B }
':'1: 'E RCC wa EERY

¥C ¢ LsC

5.2.1 Optimal Control Formulation

In this section, we formulate the dynamic non-cooperative join load sharing, rout-

ing and congestion control problem as an Optimal Control Problem (OCP).

Theorem :
Consider the dynamic join load sharing, routing and congestion control problem
in distributed systems with multiple competing classes, with fized initial time ty and

final time ty.
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If for each classc, H¢(t, X, ®., W.P(t)) 1s differentiable and conver in (X, ®°. ¥°) =
(R,RC,LS°) V t & ltg,ts]|, for each fired value of

(1, @Y, .. -1, Pl el gerl O PO)

e (RCY,LSY,...,RC*}, LS*"!, RC+!, L§**!, ..., RCF, LS%),

then (®@*(t), ®*(¢)) € (RC.LS) is a Nash equilibrium if and only if it solves
the following Optimal Control Problem W t € [t tf]:

Y e

ty

minimize go(t, X(t), B (t), (L), ..., BE(2), ®E(2),..., B (8), ¥ (2))dt

L ! tl}

with respect to (®°(t), ¥(t))
such that X(t) = f(t,X(t), ®(t), ®(¢))
X(tﬂ) — X{}

(Pe(t), Pe(t)) € (RC,LS°)
Proof: It follows from the definition of the Nash equilibrium. O

Theorem :

Consider the dynamaic join load sharing, routing and congestion control problem
in distributed systems with multiple competing classes, with fized initial time to and
final time t;.

Let for each class ¢, g°(t, X, @, ¥), f(t, X, ®, ¥), are continuously differentiable
with respect to X € R™, V t € [to, ty].

If (8*(t,Xo), ¥*(t,Xo)) = (®*(t),®*(t)) € (RC,LS) is an open-loop Nash

equilibrium and {X*(t), t € [to,t¢]} ts the corresponding state trajectory, then

3 P(t) : [to,tf] — R™, V ¢ continuous and piecewise continuously differentiable

vector functions, such that V' t € [ty,t4]:
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X*(to) = Xo

@H""‘

e~ Qha(t)| * ¢5q(t) =0 V [sd] € SD*, ¢
i qbﬂ[:d] ] L

{?Hft | i

3 — @g(t)| * 077,4(t) =0 VY m[sd] € IIf,,, [sd] € SD",¢c

1“‘I:I'*ﬂr[au:,"] % :

5Hcv ] |

e~ Ql(t)] = ¥iy(t) =0 v [d] e Dj,, [s.] €5 ¢
Raa® :
JH¢*
{‘j] c - Qfsd](t) 2 0 v [Sd] - SDL—; C

Pofsd)

g

—— — Qf,y(t) >0 d | c
5% Qo) (1) r(sd] € TIf,, [sd] € SD*, ¢
g H<* _ _
@wﬁd] - Qza.](ﬂ >0 vl [.d] = D[a_], ,{5.] eS¢, ¢

Pe(t) = —Vx H(¢t, X", &*(¢), T*(¢),P(t)) Y

Pc(tf) =0 V ¢
ﬂ[-ﬂ'—’i(t Z fr'f.q.i}(t) =1 Y [sd] € SD°, ¢
w|sd]€IIf
Z 1’0[51:’.]( ) v [3] c Sc’ e
LdJeDf, |
E‘[Isd}(t}‘ :i-’d]{t) :2 0 [3d] - H[sd? [Sd] = SDE? £

Pisg(t) 20 v [.d] € Df,), [s.] € 8¢, ¢
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Proof: The Lagrangian for each class ¢ is

L= H+ Z Q?;d]* L= {é;i,:.id] o E 1"f'ﬂ'l:r[m:."] 3 Z Qfa]* L= Z Eflf-!'i]

sd]eSD* rlsd]e IIf, s ]€S¢ .d)eDs, .

Wlth ﬁﬁ'g[_’d], Gﬁfr[ad]‘ Lfsd :_'\’:': 0 v W[Sd] - Hfﬂd]'-‘ [Sdi - Sch, C

Pontryagin’s maximum principle necessary conditions are:

X*(t) = £(t,X"(t), 8*(¢t), T*(t))

X*(fﬂ) = X
oL oH** _
2 alt) =0 = — Qfg(8)] xS 4(¢) =0 V [sd] € SD°, ¢
ac‘,ﬁz[’d] * g[ad]( ] [ﬁﬁbi[,d; Q[ d]( ]J l d]( ] | ] =
gL . OH*®
e ¥ Pea)(t) =0 = [ — Qg (t)] * P (,q(t) =0

T Prlsa)(?) Er Q) (£)] * &77,q(2)
¥ m(sd] € IIf. ;s [sd] € SD%, ¢
aLc- - _rL;ch* . ox " 5
a‘tlﬂlfyﬂ * wad](t] ] at-"};d} - Q]‘_!](t)] % T,L’[Jd](tj =l ¥ [d] = D[s]‘ [S] = S y C
oL GH®

>0 = —— —QF0(t) >0 VY [sd] € SD°, ¢
a¢)§[:d] S{pg[ad} Q{ dI( ] [ ]
1% dH™ : ,_,
ac‘f)i_[,d] 2 0 = §¢};[Jd] = Q[sd](t} :2 0 V¥ ?T[Sd] = H'{sd]! [Sd] e SD e
oL I aH*

R ¢ - Qfs](t) E 0 v [d] € DE[:;;_]T ["5‘] € Sc? c
Y Yo
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Pe(t) = —Vx He(t, X", ®*(¢), T*(¢). P<(¢t)) ¥ ¢

Pe(ts) =0 ¥ c
6&L_c'-
50~ 20 = ()t > ofy(t)=1 Vsd €SDS c
[ad] Tr[ad]EHL,F_d}
aLct .
o =0 = X Yfut)=1 ¥[s]es e
[s.] djeDF, |
Dofsa)(t)y Prea)(t) 2= 0 ¥ wlsd] € IT, 4 sd] € SD°, ¢
:;i"’f:d](t) >0 V [.d] € Df,), [s.] € 8¢, ¢

Theorem :

Consider the dynamaic join load sharing, routing and congestion control problem
in distributed systems with multiple competing classes, with fived initial time ty and
final time 5.

Let for each class ¢, g°(t, X, @, W), f(¢, X, ®, W), are continuously differentiable
with respect to (X,®,¥) € (R*, RC,LS), YV t € [to, ts].

If (2*(¢,X,X,), ¥*(¢, X, X)) = (8*(¢), *(¢)) € (RC,LS) is a closed-loop
memoryless Nash equilibrium such that (®*(t,X,X,), ®*(¢,X,X,)) s continu-
ously differentiable with respect to X € R™, Ve, t € [to,t5] and {X*(t), t € [to,t4]}

15 the corresponding state trajectory, then 3 P¢(t) : [to,tf] — R™, V ¢, continuous

and piecewise continuously differentiable vector functions, such that ¥V t € [to,ty]:
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X‘(t[}) = Xﬂ
- 5‘Hﬂh ]
S Q6] = #aft) =0 ¥ [sd € D", ¢
; Gﬁﬂ[dd] D
h 5Hﬂt

 — Qha(t)] % 05g(t) =0 ¥ xlsd] € ITj,g, [sd] € SDF,c

oH | , 1
e QL ()| *¥fiy(t) =0 V[d] € Df,,, [s.] €S, ¢
| O¥ ad) _
ch-
S Qﬂd](f) >0 v [sd] € SD°, ¢
{?"L'.u[.!d] L
dH<* + _
i Qf,q(t) 20 V n[sd] € IIf,,, [sd] € SDF, ¢
m[ad]
ﬂHE:
— 5 () =2 v (.dl € Df,, |s.| €8¢
Bb, ) 20 ] € Dy, [s] € 5%, c

Pe(t) = —Vx He(t,X*, ®*(¢,X", Xo), (£, X*, X,), P<(¢)) V¢

Pc{tf) =i{) Y o
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Dola)(t)+ D @,a(t) =1 ¥ [sd) = SDS, ¢

~of miad]
‘-‘r[ad]EHid]
b Yhalt) =1 v [s.] € 8%, ¢
[.d}EDfL]
5T,a(t), Dafa(t) >0 V wlsd] € IIf,,, [sd] € SD*, ¢
Tﬁl’[c:d](t) 20 v [.d] € Df;-}: [5] E85 ¢

Proof: The proof is similar to that for the open-loop solution.OC

The above set of equations does not in general admit a single solution. In order
to eliminate informational nonuniqueness in the derivation of Nash equilibrium
under dynamic information, we constrain the Nash solution concept further (see

next section).

5.2.2 Dynamic Programming Formulation

In this section, we formulate the dynamic non-cooperative joint load sharing, rout-
ing and congestion control problem as a Dynamic Programming Problem (DPP).
Algorithms for solving DPP’s may be found in books by Bellman [31], Howard
220], Kumar & Varaiya [274] Bertsekas [37], Ross [406] among others.
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Theorem :

C'onsider the dynamic join load sharing, routing and congestion control problem

in distributed systems with multiple competing classes, with fived initial time to, and

final time t;.

(@*,¥*) € (RC,LS) is optimal if and only 1f the following conditions are

satisfied:
t s ) ) |
i}f g°(t, X*(s), 2% (X"(s)), T*(X*(s)

Eo
i) 3 X*, P, ¥ ¢ such that :

e xv(e), K0 BE(XC (D))
T E(X(2)), e, TE(X(2)),
B1(X()), ...

_Hc 1}{ 3
h Al T (X(t)),...

)ds = constant Y ¢

s B X (1)) Pe(1))
R d (B S A
s BON(X(2)),

o IO (X (1)), P +

+ Pe(t) x (X*(t) = X) <0 ae. tE€][tots], VX €R" ($,¥°) e (RC,LS), ¢

Pe(ts) » (X*(t;)—X)<0 ¥ XeR"

Proof: By integration of ii) and using the state equation, we get the Nash equilibrium
conditions.

Definition :

Consider the dynamac join load sharing, routing and congestion control problem
in distributed systems with multiple competing classes, with fized initial time to and
final time ;.

Under the memoryless perfect state or closed-loop perfect state information
structure, (®,¥) (RC,LS) constitutes a feedback Nash equilibrium solution if

and only 1f 3V : [to,t¢] * R® — R satisfying the following relations for each class
c:
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I

17¢(t, X)
B1*(5,1(8))uerey B (5. 1(5))erees BC* (5. I(s))

Lty
— 2 - . - ds <
/f gis Xs) T (6, 1(8))s oy T (5, 1(5))y e (5, I(5)) s £

31%(5,1(5))y .0y (5, 1(5)), o0y BC* (5, I(5))

£
*te, X ls) , , d
- ft ot Lol B (5, 1(5))seoos B, 1())s s BC*(5,1(5))
v (29(s,1(s)), ¥°(s,1(s5))) € (RC",LS°), X € R™
such that V¥V s € [t,t4]
pl+ pe(s,I(s)),.... 2C*(s.I(s
XE(S) = f(S,XC(S}. ‘? {_S,I(S}),...,‘?[ JI( )); ?G (s,1(s)) j
P (5,1(s)), e, TO(5,I(s))yonn, BO* (5, I(s))
Xe(t) = X
1= s 3 cH Cx
X+ (s)  E(s.X"(s) $'*(s,I(s)), ..., 2*(5,I(5)),.... ® (515})
W1*(5,1(5)), e T (s, I(5))yune, O (s, 1(3))
X*(s) = X

where I(s) = {X(s),Xo} or I(s) = {X(7), T < s}.

The concept of feedback Nash equilibrium solution means that if (®(s), ¥(s))
1s a feedback Nash equilibrium solution to the problem during [to,ts], is also a
teedback Nash equilibrium solution to the problem during [t,f], with the initial
state taken as X(¢). So, feedback Nash equilibrium strategies will depend only on

the time variable and the current value of the state, but not on memory.

Proposition :
Every open-loop Nash equilibrium solution for the dynamic joint load sharing,
routing and congestion control problem among cooperative classes is also closed-

loop Nash equilibrium solution.

Proposition :
Under the memoryless (respectively, closed-loop) perfect state information struc-

ture, every feedback Nash equilibrium solution of the dynamic join load sharing,
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routing and congestion control problem among competing classes s a closed-loop

no memory (respectively, closed-loop) Nash equilibrium solution.

Theorem : ‘

Consider the dynamaic join load sharing, routing and congestion control problem
in distributed systems with multiple competing classes, with fized initial time ty, and
final time t;.

[nder the memory perfect state or closed loop perfect state information struc-
ture, {‘i','i') c (RC,LS) provides a feedback Nash equiltbrium solution f I V° :
to,ts) x R™ — R, ¥ ¢ satisfying the partial differential equations

_ave(t,X)
Jt B

$1*(¢, X),..., ®°,..., 2°*(t, X)
D (4, X)), ., T L, BOH (8, X))

. ave(t, X)
= min

« f(t, X
($< Pe)c(RC,LS°) X &

|+

%1'(& X}v voy B4 aees ‘i’c‘{h X}
+ g(t, X

D, X)), T L B0 (1, X))

$1*(t,X), ..., 8*(t, X), ..., 2°* (¢, X)
CB X)), T (X, L, WO (LX)

)+

$1*(t, X), ..., (¢, X), ..., ®€*(¢, X)

+ glt, X, . ) 3
( AR XL o (2 R )y s T X )

)

5.2.3 Nonlinear Complementarity Problem Formulation

In this section, we formulate the dynamic non-cooperative load sharing, routing
and congestion control problem as a Nonlinear Complementarity Problem (NCP).

Define the vector of class congestion control, routing and load sharing fractions

as well as Lagrange multipliers:

Z(t) = | $qg(t) o BEpugy o Qiag(t) wove Yoy (8) o @5 (8) )T
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and the vector of class derivative of the Lagrangian with respect to the conges-

tion control, routing and load sharing fractions as well as Lagrange multipliers:

[ 8H" JHe |
VL(Z{t)) = |w (3&[ o QE[,ﬂzjff}) (@cﬂ“[ - Qi[,dj(f])
o|sd| | | ad

- (l—ﬂﬁz[ad](f)* > Eﬁfr[.;d](t))

#[ad}EHf.d]

Theorem :

Consider the dynamac join load sharing, routing and congestion control problem
in distributed systems with multiple competing classes, with fized initial time ty and
final time ty.

If for each class c,

g¢ is differentiable and conver in (®(t), ¥<(t)) € (RC®,LS"), for each fized
value of (®(¢), ¥i(t),..., 7 (¢), ¥ 1(¢t),..., TTI(¢), ®TI(¢),..., (¢), ¥e(¢t))

e (RCY, LS, ....RC 1, LS, .., RC LS, ..., RCF, L§%)

then (@*(¢), ¥*(t)) € (RC,LS) s a Nash equilibrium if and only if it solves
the following Nonlinear Complementarity Problem ¥ t € [to,ty]:

VIL(Z*(t))*Z*(t) =0
VL(Z*(t)) > 0

Z*(t) > 0

X*(t) = £(¢,X*(t), 8*(t), ¥*(t))

X*(to) = Xo

Pe(t) = —Vx He(¢,X*, ®*(¢), T*(¢), P(t)) V¢
Pl =0 Ve
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Proof: After some algebraic manipulations, we find that the NCP: VL(Z(t))
Z(t) =0; VL(Z(t)) > 0; Z(t) > 0 with Z(t) and VL(Z(t)) as defined above, is

equivalent to the Pontryvagin’s maximum principle necessary conditions. O

5.2.4 Variational Inequality Formulation

In this section, we formulate the dynamic non-cooperative load sharing, routing
and congestion control problem as a Variational Inequality Problem (VIP).

Define the vector of class congestion control, routing and load sharing fractions:

. , . ¥
(‘I’[t}“l’{t” - [ qbf:ud]{.t) I"ﬂﬂr{rlsr::i]{:t) wﬁ:d](t) ]

as well the vector of class derivatives of the cost function with respect to the

congestion control, routing and load sharing fractions:

ik GH°  OH
2.

VH(t,X(t),®(t), ¥(¢),P(t)) = " — s
0 sdemry, 9% OV

Theorem :

Consider the dynamic join load sharing, routing and congestion control problem
in distributed systems with multiple competing classes, with fized initial time t, and
final time t5.

Let for each class c, g°(t, X, ®,¥), f(t,X, P, ¥), be continuously differentiable
with respect to (X, ®,¥) € (R",®,¥) V tE [to,ts]. If H is continuously differ-
entiable and convez in (X, ¢, ¥°) € (R", RC,LS®), VYt € ltg,ts], for each fized
value of

(@7(t), ¥(t), ..., BH(t), w(t), @TI(E), WTH(2), ..., BE(2), ®E(2))

€ (RCY, LS, ...,RC', LS, RC“", LS, .., RCY,LSY),

then (‘I"(t),‘l’*( )) € (RC,LS) is a Nash equilibrium if and only if it solves

the following Variational Inequality Problem ¥ t € [tg,t4] :

309



VH(t,X*(t),®"(¢), 2 (¢), P(t)) = (2, %) — (2°(¢), ¥*(¢))) 2 0
v (®,¥) € (RC,LS)

X*(t) = (f X*(t), ®(t), ¥*(1))

X*(to) =

Pe(t) = —T}(HC(t X*, @*(t), ¥*(t),Pe(t)) Ve
Pe(ty) = V¢

Proof: If (®°*(t), ¥°*(t)) is a local minimum for the following minimization

problem
minimaize ! g°(t, X(t), il el U S )dt
to WI*(¢), ..., ¥(t),..., BO*(t)
with respect to (P°(t), Te(t))
such that X(t) = f(t,X(t), ®(t), ¥(t))
X(to) = Xo

(e(t), T(t)) € (RC, LS°)

and ¢¢ is a continuously differentiable convex function over the nonempty con-

vex, closed and bounded set (RC®, LS¢), then V&([to, t4]:

‘aHE-

aH*<*
S x (g — () + D
ac't}cr[ad] o] - ﬂ.[dd}EHfl Ehi)# [ad]

* (@7(sd) — Prisa)lt)) +

« (45 —wf"‘:d](m} >0 V(&%) € (RC],LSY), c
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Summing over all classes

gH | " .
B { * (Dglea] — Pofsa)(t)) +

c
¢ (sdiesDs | 995(sq)

cht -
. * (Blrpg — B, (t)) +

mlsd]e I 9, aqﬁr [sd]

SH*" o
(Y — YEa(E) P 20V (8, ¥°) € (RCE,LS°)

awfad] r

d

Another equivalent VIP formulation is given in the following Theorem:

Theorem :

Consider the dynamic join load sharing, routing and congestion control problem
in distributed systems with multiple competing classes, with fized initial time tg and
final time t¢.

Let for each class ¢, g°(t, X, ®,¥), f({,X,®, ¥), be continuously differentiable
with respect to (X, ®,¥) € (R",®,¥) VYV tE [to,ty]. If H® is continuously differ-
entiable and convez in (X, ®°, ¥°) € (R, RC°,LS®), Vt € [to,ts], for each fized
value of

(B(t), ®(t),..., D7 (), T1(2), ®TI(¢), WeTI(¢E), ..., ®C(t), ®e(t))

E{RC' LS ,...,; RC, L8, RC-* . L§",..., RC®, L§®),

then (®*(t), ¥*(¢t)) € (RC,LS) s a Nash equilibrium if and only if 1t solves
the following Variational Inequality Problem WV t € [to,t4]:

VL(Z(t)*)* (Z-Z(t)*) >0 VZ>0

X*(t) = f(t X*(t), ®°(t), B*(t))

X*(to) =
Pe(t) = —vxﬂf(t X*, &*(t), (), P<(t)) ¥ c
Pi(t;)=0 ¥e

and the VIP: find z* such that f(z*)*(z —z*) >0 Vz >0

are equivalent.

Proof: The NCP: f(z*)xz* =0 f(z*)>0 z* >0
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5.2.5 Maximum Principle for Separable Cost Functions

In this section, we derive the first order necessary conditions for a Nash equilibrium
on the path flows, when the cost function of each resource depends only on the
flow on this resource.

According to the Nash equilibrium definition, each class ¢ minimizes its cost

function ¢° given the optimum decisions of all other classes.

t $1%(1), ..., B°(1), ..., BC*(¢
MInNimize J"f;r":(t,}"f;(t), (o )ersy 2] () )dt =
to Wi(t), ..., ®(t),..., T (1)
= S [ G (K (£) AL (£), o AS (), s AC*(£))dE +
= _-‘/tu gl‘._’l‘ ’ 1] » Ay j ),...-_. ij ) eeey FAyg )
i]

b3 [ G KA (1), X(8), o A (1)) +
T Zf“gad t, X, -’d]( ] a[ad( } )‘c ,.-_\r]( ) }ngad]( ))dﬁ +
[sd]

+ Z Mtx (), A3 ()5 e AL (£)5 ooy AR (2) )it

with respect to  (®(t), ¥(t))
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such that

XEa(t) = fh (8, X5(t),8(t), ®(t)) VY ij, [sd] € SD*, &
Xbagt) = fha(t,Xi(t), ®(t), ®(t)) Vi, [sd] € SD*, &
Xiat) = gt Xoa(t), 2(2), B(2) V [sd] € SD*, &
Xfapa(t) = gt Xpa(t), 8(t), ®(t)) V [sd] € SD*, &
Xpa(te) = Xiiae v ij, [sd] € SD*, &
XEalto) = X¥ao Vi, [sd] € SD*, k
Xealte) = X400 Y [sd] € SD*, k
Xl apalte) = Xfapdo V [sd] € SD*, &

Bopa)(t) + D Sipa(t) =1 V[sd] € SD°
r{sd]€IIf

[2d]
Potad)(t)s Priaa)(t) 20 V 7(sd] € IIf,, [sd] € SD°
Uf,q(t) > 0 v [d € D), [s] € S¢
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Pontryagin's maximum principle necessary conditions are:

Xk a(t) = fE a8, X5(8), @), ®H(¢)) Y ij, [sd] € SD*, k
Xkea(t) = fha(t,Xi(t), @*(t), B (t)) Vi, [sd] € SD¥, k
Xkea(t) = 56 X0a(1), 8(2), T(t) V [sd] € SD, k
Xbwoa(t) = gt Xi(t), 8(8), T (¢)) V[sd] € SD*, k
Xk a(te) = Xhua vV ij, [sd] € SD¥, k
XEalte) = X v i, [sd] € SD*, k
XEalte) = Xidg.0 V [sd] € SD*, &
XEea(te) = Xfinao v [sd] € SD*, k
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096,48, X2, (1), 87 (1), T (1))

a‘i);[sd]

i Z Pcr{.sd]

u[-

—Q[,d]( ) c’f ]{f) = ()

gi; (. X7;(t), 2°(t), ¥*(t))

Fa (6 X (1), @°(2), (1)) -

7 [sd] € SD°, ¢

' , Bgs(t, X:(t), B*(t), T*(¢))
_|.

_; aa&:rr[ad Z aéw{ad

+>° Y sz‘;d] ) * Ve B (8 X5(2), @7(2), *(¢))+
k [sd 1]

+Z D Y PR (8) * Ve, B9 (8, X5 (), ®7(2), *(2))—

.1::'.] 1
—Qfq(t)| * &31,q(t) =0

vV wlsd] € ITf, ), [sd] € SD, ¢

-+
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Ags;(t, X2 (t). (1), U(t)) Age(t, X (t). ®*(¢), T*(t))
Z : 8 J, T Z 6‘1 +

ij ¥ [ad) i Led]

_i.

ag[;d{t Xg[,d( } )1 ‘Iﬂ{t]) —|— 8gfd](tﬁxrd](t}* @*(t}“l”(t})
O¥fea - OYfg

+320 D0 DRI (8) % Ve B (6, X55(8), @7(2), TH(2))+

ke |5ﬂr] 17

+T 3 iPi}:dl ) x Ve Bty (6 X5 (2), 87(2), €7 (¢))+
[s'd"]

+ D Py (t) * Ve B (8, X (2), B7(2), T*(2))+
k

+ZZPF£[J d]( 1fkd][ d[tﬁxfd}(t)=§*(t)"1'*(t))"

— Q5 ()] *wsn(t) = 0 Y [.d] € Df,j, [s] € S5, ¢
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Ofa)(t: X g (t). B7(E), vr(t))
0of

ol ad]

ZPa[ad] " vfi’g[ d] asd](t Xc}[.!d}{ }ﬁ‘i.-(t}ﬂ lI,'(t})"

_Q*[f!d}(t] >0 v [sd] € SD°, ¢
Zﬁgfj(t-.xr’j(ﬂ)-i"{ ), ¥ (¢ Jrz Ogi(t, X7 (t), ®°(¢), ®*(¢)) |
T OB o) O oal |

+ 2 T TPl (t)* Yoty Tivan (. X563, °(0)+
ko [s'd']

o Z Z Z P1 (s dﬂ ) * ?d:-f[: }f“;! d ](t,X;’(t), ®*(t), ®°(t))-

ko[s'd']

—-Qfglt) 2 vV w[sd] € IIf, ), [sd] € SD°, ¢
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Ogs (¢, X (t), ®*(t), T*(t)) Ogs(t, XH(t), ®*(t), T*(t))

>y ’ + 3 28 &
— e

1] dﬂlisd] I‘ﬁ'L‘l d]

00 X8, 870, ¥°() _ Bgfg(t Xigt), B0, T°(8))
| ﬁhfad] % am::sd]

"|-T Y TPIL,. .-ﬂ,1| *?uf fﬂ;[ ﬂr]{t-X:j{t]m(I’*(tja‘I"(t)ﬁj_'_

k [sd] 1]
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Pilg(t) = —Vxe  g5(t,X3, @), T (t))-

> ZPU[_’ «Vxr

1_:13;{] [ ](t X* (ﬁ*(t)?@*(f)}
O [s"d"]

¥ ij, [sd] € SD*, k&

Pig(t) = —Vxu gi(t,X;, @(t), ¥*(t))-

_“Z ZPa[sd] Txkl d] 1[5&'](t X* (I)*( ] (f))

" s'd]

Vi, [sd] € SD*, k&

Piglt) = —Vxe It X5 @7(2), ¥ (1)) -
=~ Pofia(t) * Vs haa (X, (1), (1))
YV [sd] € SD*, &
P[d][,d](f) = —Txrd] g[d(t X1 ®5(¢), ¥*(t))-
~3 Y P{la(t) * Ve (6 X g, (1), ()

nols ]

V [sd] € SD*, k
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fed
) Yig(t) =1 YV [s.] € 8¢ ¢

.d]eD¥,

Poisd)(t)y Paleq)(t) 20 V m[sd] € IIf,y, [sd] € SDF, ¢

wirn(t) 20 v [.d] € Df, s.] € 8¢, ¢

The partial derivatives of the cost function ¢°(¢,X, ®, ¥) with respect to the

path fractions @7, can be written with respect to the link flows A{; and node

flows AS:
ngj(f X—:‘j N B 85’5‘5“1}:"&}*&1&) i ‘a)‘fj

@f;f?w [sd] 6)1:3 ﬂqﬁ:r[sd]
@gf(tszﬁﬁtj c c ¢
— . a};cj : i (T[sd](t] T ‘?13](t} * ][sd](t)) * ]'t.j'ETi*’d](t)
1j

59:(£, X, B, ¥) _ 0gi(t, X Ar) 0N
@an[sd - é}’l‘f acﬁ:-r [sd]

Il

. B-g::(t'.l Xia A:)
- RBY;

« (Vo (8) + 711(8) * Vi, () * Liepoal(t)

Odfua)(ts Kolsa), B, ¥)  0gfa)(ty XKolsd), Aofsa)  ONGju)
OS5 pa ONfsa " 805

. @gf_gd] (t: Xa[sd] . JI-I‘iu:::n[.m'] }
OX ,a)

¥ (Tfsd](t) T ‘Tr.s]{t:] * ybfsd](t\])



0gi;(t. Xy, 2, ®)  9g5(t, Xy, Ay;) 9N

sl o 4 \c ) U1E

—
ama

35;':;,“- X—?'J 3 A‘IJ }
OA;

>

m[sdjE HIFM]

* Y5.1(8) * @op,a)() * Lijenfaq) ()

&gﬂff}:gf‘ﬁﬂl’} B agf{tsxh-ﬁf) 3'}"';:
0 Iﬁ’ﬁd] 2 aﬂ}fsd]

“1001(8) * Grpear() * Lientuar ()

W[’d]EHfad} t

é‘ﬂfsd}[ t, Xﬂ[sd]g ‘I‘, ‘I') - 8ngd]( 2 Xﬂ[ﬂd]’ A”["dj ) {5’)\3[5&] -
O OAG(sd) M

ﬁg";d (t Xa[sd} y ﬁﬂfad] ) 7 e
= [Tfﬁc — * Va)(1) * Dypeq(E)

olsd]

0falt: X1ay 2, ¥)  Ogfy(t, Xy Aa)) 9Ag
{E}?,-“:"f,d] ﬁ)‘rl':.d] Sﬂ}fﬂd]
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Then Pontryagin’s maximum principle becomes:

XEa(t) = £ 06X, 8%(), ¥ (t))  Vij, [sd] € SD*, &
Xbat) = £k, X:(t),®%(t), ¥ (t)) YV C, [sd] € SD*, k
Xkealt) = £, X0,q(t), 2(t), ®*(t)) V [sd] € SD*, &
Xtona(t) = g6, X:y(t), (1), ®*(t)) V[sd] € SD, &
Xalte) = X0 Vv ij, [sd] € SD*, k
Xbalte) = Xbao Y 1, [sd] € SD*, k
Xsalte) = XiLao V [sd] € SD*, k
XEuea(te) = Xfando ¥ [sd] € SD*, k&
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¥ (Vaa)(t) + 0. 0(0) = Uy (€))+
o[ sd]

il Z ﬂrad] ¥ T‘f‘c fm[sd‘l{:t"x;[sd](t)ﬂ{I'*(t}‘-‘I’i[t))_

of #d]

— Qfuq(t) | x657,q(t) = 0 V [sd] € SD*,

-y t, X (t),Az(t)) - ’ -
Z gu{ J 5;::} J( * (’T[ad‘(t) i T[s](t) ® u1[5d](t)) * ]-ijEﬂT[sdj{t}"l'
i

L W

- *( .
- Z X@(}\j A (Vs (B) + 710 1(t) * V(g (L)) * Liexfsa)(t)+

+Z ¥, ZPUW * Ve mjfff;; (8 X5(8), R2(2), T*(E))+

f.s d L)

#2020 2P (0) * Vg B (8. X3 (), (), (1))

'if[.s-:i 1

-Qfq(t)] * o77,q(t) =0 V n[sd] € IIf,, [sd] € SD", ¢
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0g;(t, X55(t), Af;(E))

2. . % * Vo1 (t) * D51sa)(8)) * Lijenisa)(£)+
b 1 wadllEH[ d] 1]
Og;(t, X;i(t), Ai(t)) s
i Z Z @.Ac * ‘}Fs](t) * m‘.’r[sd]( ]) * 1#Ew£ad](t)_‘;—
1 w[ad]EH;’d] 1

agfad](t?){*[sd]{ J:' ;Lsd](t])

T N * 1 (t) * L))+
agfd*(trxrd](f)eﬁfm(ﬂ}
ot T WL
ax¢ 4 l#]

+30 D0 PP (8) * Vg B (8. X55(2), 8%(2), () +

ko [s'd'] 1

IPIRI PO RIS HOR JUR JOW

[s'd'] 1

+ P () * Ve £,a (8 X3a(8), 27(8), 7 (8)+
k

+Zzyﬁd@'muw 26X (), ®%(2), T*(2) -

—Qf, (t)] * Yig(t) =0 V [.d] € Df,), [s.] € 8%, c



0gf (b X g () Al g (1)

5‘)&3 od]

% I:F:rf_gd][t} + 'Tf,,](f} % 'I#‘f:d]{f)}-l-
+ Y Pk Ve 8 (8, X2 ,0(8), @°(¢), T (2))—

,__,[ 4) " olsd]
ke

—Qfﬁ]{” >0 V [sd] € SD°, ¢

8g,(t, X2,(t), A(t))

Ogs(t,X7(¢), Al(2))

+y° P, () % Vige 50 (8, X5(t), 8°(8), ¥°(¢))+
2 L |

,..l sd] 1_3[.1 d]

+30 3 YR (1) Ve B (6 X (1), (1), ®°(8)-

~Qf,q(t) 2 0 vV wlsd] € IIf, 4, |sd] € SDF,

> — (Y6 (t) + 45 (8) * U () * Lijenisa)(t)+
8X;,

" (Tfacﬂ(t) + T[;](t) = ’i‘_‘c:d}(f)} * liEwisd](tj+
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Ags;(t, X5.(t), A%(t)) s
ox,

Lo 2

TREPEIS 1

gt X1 (), AX(t)) .
+3. 2 A B AN * Y1, 1(2) * 071,41(8)) * Licafea)(t)+

s OAS

1 TT'[.!chEH[ d]

Iﬁgid](ﬁ,}i;[ﬂ](f}? ;{sd:,r(ﬁ))
OAg e

*T[a (¢ }*d}a[ad( ))+

39r gt X7 (), Af y4(2))
GAf g

+3 0D D P () x Ve £E 0 (6, X5 (), B4(2), B (¢))+

;_“d [sd] 1J[s
ko [s'd'] 4

3 3 DA« Var, flr X2, 20 2014
k [s'd

T Z Pﬂlﬂi] vuﬂm G[Jd](t Xn{sn{ ( )-_. ‘ﬁ*(f}, ‘Ij*(t)}+

IIE,E * * *
+ 222 Prra(t) = Ve £ (6, X[ g(2), 87(t), T7(2))-
ks ]

Q5 (t) =20 v [.d] € Df,;, [s] €S, c
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—~ ke
Pisalt) = —Vx:

17[ad]

95;(t. X35, @(1), ¥*(t))—

-y 3 P&, () * Vx e AT (6K, @5(8), T (1))

L ™ qg(s'd'] i}

_z Z Pz[s d Txk[ d] f:.s d ](t”X:"‘I)*(t)? \If*(f])

VY i, [sd] € SD*, k
Piat) = —Vxr gt X 206, 2°(1)-

_ZPEE:&](E) * ?}[k ﬂ[ad{t X, o[sd]? $* tj ‘I’*( ))

T

V¥ [sd] € SD*, k

Piuga(t) = —Vaxr  gfa(t, Xt ®*(t), ¥*(t))-

[-d][sd]

=2 Plia(t) * Ve, g (8 X 4, 8°(1), ¥7(2))

n (]

VY [sd] € SD*, k&



() + D .a(t) =1 V¥ [sd] € SD, c

rlsdl€lIf,
djeDy, | E:[c:d](t) =1 Vi[s] €S ¢
Polsa(t): Pfsq(t) 2 0 v w(sd] € Iy, [sd] € SD°, ¢
Uirg(t) >0 v [.d] € D5, [s)] € 8% ¢

Next, for each class ¢, we define the length for the rejected flow [sd|, the length
for the path w|sd| and the length for the source-destination pair [sd]:

agf,d](i? XG[Sd](t }1 Aﬂ[&d}(t ])

Ec,Naah(t) =
a/\ﬂ[sd]

olsd]

* (Vg () + 70 (1) * ¥ (2))+

0} 3

T Z P‘I':jﬂ'd] * ?é;[ld] f;c[’d](tjxﬂ[_,d](t), @(t), ‘I’(i])
k

v [sd] € SD*, ¢
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5gf;(t~xrj(t)ﬂu(f})

>

5 OA;

+ Z 6}‘:’:
Z Z P?_.HJ d

k [s'd'] i

* (Vg (8) + 2101 (8) = g () * Lijenisa () +

% (?'Csd]{t} T Tfsl{t) * ﬂjf&dl(t)) * 11'-E‘.rr[sd](t)+

£ an(t, Xii(2), B(2), B(t))+

Prisa) id[s'd']

+Z S S PR (8) % Ve B5 (8, X(t), (1), B(t))

Iar-:f 1

V w[sd] € IIf, 4, [sd] € SD?, ¢

329



f:;"‘]r“’h(t) = Z E a/\{- * j;]{t} * "'E}fr sfﬂ( )) ¥ 1uEﬂ'[sd](f)
1]

1) w[sd]E H[ 4

2D

1 r[sd]éﬂf n
'ﬁgf,d](t% Xﬂ;rsd](t)ﬂ Aa[ad](t))

—I_ s
a)\ugad]

+ZP Sa(t) * Ve Tha(t: Xopua(£), B(8), ¥(1))+
+ZZPM () Ve B0t X pa(t), 8(8), B (2))-

v [.d] € Df,;, [s.] € 8%, ¢

External arriving flow at a source i1s assigned to the destination that has the
minimum length from the source. However, this flow may be rejected if the length
of rejecting it is less than the lengths of the paths to its destination. If it 1s
accepted, then it is routed to its destination via the minimum length path.

In the next section, we will derive the same conditions by an alternative way,

and we shall state the above ideas more formally.

330



5.2.6 V.I. for Separable Cost Functions

Equivalently, the Nash equilibrium definition. each class ¢ minimizes its cost func-
tion g° given the optimum decisions of all other classes. We first solve the routing
and congestion control problem assuming that all other classes act optimally for
themselves. So, class ¢ first solves the routing and congestion control problems

Jetiie=

minimaize

1% ¢ C=
/"f.f (6., *(t),..., P (f),...,@ (t)
to VR T S

Ly "
= th G55 (E K i (£), AL (£)s oy A (£), e AT (1)) dE +
1)

o

2
+ Z/ GE (6, Xi(£)s AT (£), evny AS(E), s AC*(£))dE +
1 to
Ly |
+ Zl gfsd](tvxﬂ[sd](t}ﬂ}"cl;fl.gd](t)v“-a ;[,d](t}-u*}‘g;d]{t})dt
[sd] =77

0

ty
25 Z/t ng](t*sX[ﬂ(t)*}‘i;‘(t)?* ?dg{t}ajkfﬁg]{.t)}df
[.d]

with respect to  ®°(t)
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such that

L
I:'I
[~
—
T4
o SN
[

fia(t Xii(t), (1), ®(t))  Vij, [sd] € SD, &

Xbalt) = fhy(t.X(t), ®(t), ¥(t)) v i, [sd] € SD*, k
Xi[sd](f} — f:[sd](t,}{ﬂ,:sd]{t:l,‘i’(t], ‘I"(f}] H\?f [del - SDkg. :EJ
XEia(te) = X0 vV ij, [sd] € SD*, k
xXE ) = X VY i, [sd] € SD*, k
tad]\ "0 i[sd],0 L ?
Xonalte) = Xia0 vV [sd] € SD*, k
X?d][ad](tﬂ} — X?d][sd},ﬂ Y [5d] = SDk, k
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The necessary optimality conditions for class ¢ are

Age(t, X*(t). P*(t), T*(¢t))

(1] SD {amg[ad] * (D510q — Polsq(t)) +

Lo Oge(t.XE(2), @0(¢), ¥r(t))

L ) A [ |
ﬂ'[sd}EHfsd! dmﬂ[sd] *{ *.rr-,:_qd] = inﬂ‘rgd](t}}

}EU v @ ¢ RC*

such that
Xk a(t) = fRoa(X5(E), 2% (2), ¥ ()  Vij, [sd] € SD*, &
Xheat) = f;‘fsd}({.x;(z),@*(t)ﬁ*(tj) Vi, [sd] € SD*, k
Xkea(t) = f5,(6,X5,g(t), (), ®*(t) ¥ [sd] € SD¥, k
Xbua(t) = gt Xig(t), 8(t), ¥*(t)) Y [sd] € SD, k
XMalte) = X0 Y ij, [sd] € SD*, k
XEalte) = Xkao Y i, [sd] € SD*, k
Xealk) = X V [sd] € SD*, k
Xfea(to) = Xfgpao V [sd] € SD*, &
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A
Pu[sd](f)

Sk
P?[m’*{t)

Pck

~ck
P fisa

o[sd] (t)

|

= Vx5t X5, @5(t), 7 (t))-

=303 Vxe PO () £ (8, X5, @7(2), TU(2))

t}ni 1.]'-!!1"']
% led]

VY ij, [sd] € SD*, k

—Txk gl(f X, ®*(t), ¥*(t))—

=20 2 Vixe PO (t) £ (6, X5, @(8), ()

L .-sr:fl

Y i, [sd] € SD*, k

~Vxt .9 (8 Xoq0 B(8), ¥*(¢))—
—Zﬂ:vxglﬂ]PZ‘[L](t)* ofsd) (8 X5, 27(t), ¥7(2))
VY [sd] € SD*, &

_VJ{* g[d](t X*d] B (1), Tt ) )~

[.d][sd]

_ZZVJ{EJ]M}PEE]@ (t )*fﬂ d][s ﬂ:](t X[ ®*(¢), T*(t))

!

v [sd] € SD*, &
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*;D;racf[.fj T

ﬁ}ztsd] { t } )

.

P

m|ad)] EH[

| (T

1:_‘.'] A

?T_Jd

d]

> (

g1

¥ |sd]

'*J?Tsd' -

c SD

s

C
[ad]”

|sd|

c SD°

We can decompose these conditions for each source-destination pair |sd] € SD°

0g°(t, X*(t), *

¢ 2.

vlad|eII¢

such that

[+d]

ﬁr:friisd]mtq’*m} (Pofsa) — Pofsa)(t))+
07 &R BB, T ) * (Pr(ed) — Prisa(t)) 20V 2° € RCS
00; 15l o
Xkoa(t) = fh(6X50), 8%(8), 2% (¢)  Vij, [sd) € SD*, k
Xk (8) = £, X:(t),8°(t), ¥ (t)) Vi, [sd] € SD, &
Xkeat) = 5 a8, X0, (), @(2), B (t)) V [sd] € SD*, &
Xfna(t) = gt Xig(t), (), ®*(¢)) V [sd] € SD¥, k
X alte) = X&uao ¥ 15, [sd] € SD*, k
Xitalto) = X Vi, [sd] € SD, k
Xehalto) = KXo v [sd] € SD¥, &
Xfueato) = Xfgnao Y [sd] € SD*, &k
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o
L
. oF
B
e
T
o —
Il

.,

1] #d]

gi;(t X

?'1'3

*I?*(f)._, ‘I’#(t)}-

ijsd] TJLE d ] g8

_Z Txk P (t) *fﬂl ‘d']{tﬂx;qu}*(t),‘y*{f”

vV [sd] € SD*, ij, k

P = —Vxr gf(t,X5,@°(t), ¥7(t))-
=2 3 Vg Pl (8) * T (6 X, 27(2), (1))
ot
Y i, [sd] € SD*, k
Pihy(t) = —Vxr  gha(t X 8°(2), T (1))~
-2 Vs, Pilalt) * Klaa(t X5, #7(1), #°(1))
v [sd] € SD*, k
Pf.j][ad](t) = —Vx XEar d]g[d(t X‘dt?@*(t) T*(t))—

. d][+d]

—S N Ve PG () # £t X g, B7(2), ¥7(2))
n (s

Y [sd] € SD*, k

cﬁz?sd](t) + Z - frTnd], = 1

ﬂ[:d;EHi’d]

{:r[.m”(t} {?f?'c sd( }:}U‘ \?( [sdlEH[sd]
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Theorem : Routing

There must be flow only on minitmum length paths:

Goalt) >0 only if L") = min{Ig (). min (U ()

‘j:,d][t] 0 0.0,

Sosal(t) + D Sala(t) =1
Tr[‘!d]EHE:a.d

v wlsd] € Iy, [sd] € SDS, ¢

and satisfies the partial differential vectors for the state and the costate vari-

ables.

Theorem : Congestion Control

Flow 15 not admatted into the network only if its rejection length is less than

the minimum length path to its destination:
e glt) >0 only if 1507 () = min{I50 7" (¢), min {1500 (¢)}}

qf}':r[sd] 0 .U,

Sela(t)+ D, dilg(t)=1 V[sd] € SD,
mlsd]€IIf

and satisfies the partial differential vectors for the state and the costate vari-

ables.
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Having found the optimum routing and congestion control decisions, we proceed
to solve the load sharing problem for class ¢ assuming also that all other classes

act at their optimum decisions. So. the load sharing problem for class ¢ is

; S (t), ..., (L), ..., 2O (¢
MINIMLZE fgf(t‘}{(t)‘ ( ) ( ) ( )

X (1), )dt =
t B(t), ., (), ..., TC(2)

- Z/ gt.i' t XU )‘1*( ) '-*1)‘$j(t)a--*a)1§}*(t))dﬁ T
™ Z/ GECE X (8 0 ) sy NS Ve AT B Vel
tf
~+ Z/; grsd}(tfxﬂ[sd:l{t)j i[*sd](tj zl_ﬁlﬂ( ) Au[sd]( ))dt 4
[sd] *7°

with respect to ¥e(t)
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stch that

XEalt) = fia) (6 Xij(2), ®(¢), ®(t)) VY ij, [sd] € SD*, &
Xba(t) = f£5.(6,X(t), (1), T(t)) V1, [sd] € SD*, &
Xina(t) = €5 (6, Xo.q(t), 8(t), (1)) vV [sd] € 8D, k
Xfaalt) = £ e (t Xpa(t), ®(2), ®(t)) V [sd] € SD*, &
XEalte) = X¥ledlo v 1j, [sd] € SD*, &
Xhalt) = Xk Vi, [sd] € SD*, &

k

Xopa(te) = XE o V [sd] € SD, &
; -

X gea(te) = Xf‘*dhad]ﬂ V [sd] € SD*, &
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The necessary optimality conditions for class ¢ are:

Og°(¢, X*(t), (1), T*(¢))

w (Y — UE(t)) >0 ¥ & € LS

0%
such
X at) = fE o X5(t), @°(2), ¥ () Vi, [sd] € SD*, k
Xkea(t) = fha(t.X:(t),®%(t), ¥ (¢)) Vi, [sd] € SD¥, k
Xkealt) = £ (6, X0y (1), @%(t), ®*(t)) V[sd] € SD*, k

fF (8 X2 g(t), 8%(t), ®*(t)) V [sd] € SD*, k

L

L.
&I-
‘e
e
—_—
e
e
Il

Xk (te) = XEoa V ij, [sd] € SD*, k
Xhalte) = X0 Vi, [sd] € SD*, k
Xialte) = XE.ao VY [sd] € SD*, &
Xtonalte) = Xfanae V [sd] € SD*, k
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Pf;?ad]{f) =

~SC. K
Piglt) =

P‘;'::’:d](t) —

SOk
Planalt) =

D Y

EDE:. ]

biea(t) 20

=Vixg g0t X5, @5(t), BT (1)) -

-3 ) Vxe P7, (1)

17| ad] E.”_'ﬂd.i
" [f—t d]

Y ij, [sd] € SD*, &

—Vxek gf{iaX:a CI)*(H., qlt{t:])_

1| sd]

" fs'd)
Y i, [sd] € SD*, k

—Vxk 4, alt; X

o[+d] ol ad

* f;}[s’d]

13 ‘I"(t)': ‘I"{t))_

n(t, X5, ®%(t), T*(t))

=37 3 Vs PN () £ (6 X5, 8 (8), 21 (1))

=2 Vxe  Poia(t) « £0,4(6 X5, #°(2), T°(¢))

!

7 [sd] € SD*, k

. -

|.d}{sd]

X 5Vt P

n [a.]

vV [sd] € SD*, k

)=1 V[s.] € §°

vV [.d] € Df,), [s.] € §°

d)[s'd

gfalts Xl g $*(t), T*(t))—

(t X| d]?

®*(t), T*(¢))
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We can decompose these conditions for each source node [s.] € S¢

s

Og°(t.X*(t), ®*(t). *(¢))

* (ny:l:,sd] — 'Q:.I1[:S*d](f]} = [} H ‘I‘E E LSC

dJeD, | 0Yfq) -

such that
Xaa(t) = f5.g(6X50),2%(2), B () Vij, sd] € SD", &
X)) = fEaXHt), 8Y(t), B (t) Vi, [sd] € SD, k
XEat) = 56X 0g(t), ®5(t), ¥4 (t)) VY [sd] € SD*, k&
Xfa(t) = ff,a(t, Xea(t), 8%(t), ®*(t)) ¥ [sd] € SD*, &
X o) = X% v ij, [sd] € SD*, k

ij[sd]\ "0 ij[sd],0 J, |5@] © )

Xgalto) = Xiao Vi, [sd] € SD¥, k
Xhalte) = Xk V [sd] € SD*, &
Xtuea(te) = Xfanae V [sd] € SD*, k&
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POt at) = —Vxi  g5(hX5, 84 (1), T ())-

t1] s d]

=30 3 Ve PO (8) % £ (8, X5, 7(2), TH(2))

o e 17(s'd
¥ ij, [sd] € SD, k&

Piy(t) = —Vxi gf(t, X[, @°(1),2"(t))-

=30 > Vg PO () < £ (6 X5, 87(2), ®1(1))

" [s'd]
Vi, [sd] € SD*, k

Poo(t) = —Vxe gfa(t, Xy, 2(t), ¥*(¢))—

o] sd]

_ZVX];[ d] cr[.:d t) o ﬂsd](tﬂxz"{ﬁ‘{t)&q’*(t)J
Y [sd] € SD*, &k

[d]

~ s Z?xg][ Pl () * £ (8. X1, 2°(2), (1))

no[e')
V¥ [sd] € SD*, k

Y, Yrat)=1 V[s]ese

d]ED o]

Pera(t) > 0 v [.d] € Df,,
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Theorem : Load Sharing

For each source, there must be flow only to destinations whose length 1s mina-

mum.

V() > 0 only if I (t) = min{f ™ (1)}
L '

ﬂ’f:;d*(t) - [} o.Ww.

Y. Yhgt)=1 V[d] € D}, [s] €8°, ¢
[.d]eS§

[s.]

and satisfies the partial differential vectors for the state and the costate vari-

ables.

So, in this section we have formulated and solved the dynamic join load sharing,
routing and congestion control problem as a dynamic Nash game among multiple

competing classes.

5.3 Stackelberg Equilibrium Solution

In this section, we formulate the dynamic join load sharing, routing and congestion
control problem in distributed systems with two classes of jobs, one more powerful
than the other, as a non-cooperative dynamic Stackelberg game. An example of
such classes of jobs is when they have different priorities. Another example is
when there is a system administrator (leader) and users (followers) with different
objectives and power.

Customers of the most powerful class try to use the resources of the distributed
system for their own benefit, ignoring the inconvenience that they cause to
customers from the less powerful class.

Next, we briefly survey research on the dynamic Stackelberg game theory:
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Starr & Ho [464] introduce nonzero-sum differential games and discuss Nash
equilibrium, minimax and noninferior strategies. Then they solve the linear-
quadratic game.

Chen & Cruz [96] analyze Stackelberg games with biased information. They
present necessary conditions for open-loop strategies and use dynamic program-
ming to define feedback strategies. Simaan & Cruz [449, 448] derive necessary and
sufficient conditions for Stackelberg games. They also solve the linear-quadratic
problem. Cruz [117] considers hierarchical games with multiple players at each
level.

Basar & Selbuz 28, 29 consider linear-quadratic Stackelberg games. They
derive a linear one-step memory closed-loop solution for the leader and a linear
feedback solution for the follower. Basar [25] obtains the sufficient conditions for
a three-player hierarchical game. Then he applies them to linear-quadratic games.

Papavassilopoulos & Cruz [376] analyze Stackelberg dynamic games, which are
nonclassical control problems, since the control depends both on the state and time
and 1ts partial derivative with respect to the state appears in the state equation
and in the cost function. They also [375] derive sufficient conditions for Stackelberg
and Nash strategies for linear quadratic deterministic differential games when the
players have memory.

In the following, we shall develop a methodology for the joint dynamic load
sharing, routing and congestion control problem based on the Stackelberg game
theory.

Next, we give some definitions for a two-hierarchical-class game similar to those
in [27] for Stackelberg games:

Definition

In a two class join load sharing, routing and congestion control problem, with

the most powerful class a as the leader and the less powerful class 3 as the follower,

the set RP (@2, ®2), defined for the class a strategy (2%, ¥¢) € (RC*,LS%), by:

ROS(®2,®%) ={ (®°,¥P) ¢ (RC®,¥P) such that :
JP (@, T, $° BP) < JO(@, ¥, BF, UF),
v ($°,%°), such that (®°,¥P)c (RC?,LS?)}
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1s the optimal response (rational reaction) set of the less powerful class 3 to the

strategy of the most powerful class a.

What the above definition says is that the less powerful class [J chooses its
decision vector (®°, ), that minimizes its cost function J?(®*, ¥, &P, ¥?), for
given strategy (®%, ¥®) of the most powerful class a.

Definition

In a two class join load sharing, routing and congestion control problem with
the most powerful class o as the leader, a strategy (®°*, ¥°*) € (RC%,LS") s

called a Stackelberg equilibrium strateqy for the most powerful class a if and only

of

inf J(@* W PP PP <
(B8 PB)\cRA(Par Far)

< inf J(®* ¥ d° ¥P) V¥ (8%, ¥*) € (RC* LS
(B2, FBIcRE (P, Fa)

This means that the most powerful class @ chooses its strategy (®%*, ¥**) that

minimizes its cost function J(®, ¥*, &° ¥”), given the optimal response set

RP(®~*, ¥**) of the less powerful class 3 to its strategy (®**, T**).
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Definition :

Let (@, w*) € (RC*,LS%) be a Stackelberg strateqgy for the most powerful
class a. Then any element (®°*, ¥P*) € RP (P, ¥°*) 1s an optimal strategy
for the less powerful class 3 that is i equilibrium with (®%*, ¥**). The strateqy
(@o*, Uo*, P WP*) s g Stackelberg solution for the game with the most powerful
class a as the leader and the cost pair J*( @7, e+, P+ FP*) JO(Po* or 5+ Po+)

18 the corresponding Stackelberg equilibrium outcome.

5.3.1 Optimal Control Formulation

In this section, we formulate the dynamic non-cooperative join load sharing, rout-
ing and congestion control problem as an Optimal Control Problem (OCP).

Theorem :

C'onsider the dynamac join load sharing, routing and congestion control problem
in distributed systems with two hierarchical classes, with fired initral time tg and
final time t;.

If for each class ¢, He(t, X, ®, ¥, P(t)) 1s differentiable and conver in (X, ®¢, ¥°)
€ (R,RC°,LS®) VY tE [to,ts], for each fixred value of (®*, ¥*) € (RC*,LS"),

then (®*(t), ¥*(t)) € (RC,LS) s a Stackelberg equiltbrium if and only if
solves the following Optimal Control Problem:




Lty
e f g (4, X (), B (1), T (1), B5(¢), B5())dt
to

with respect to  (®2(t), ¥(t), @°(t), ¥(t)))
such that X(t) = f(t,X(t), ®(t), ¥(t))
X(to) = Xo
(®2(t), T*(t)) € (RC*,LS")

(®4(t), ¥7(t)) € (RC”, LS")

Ly
= ) min gﬁ(f?X(f): ~ )dt
($8(¢),5(¢))e(RC? LS?) /1o We(t), TP ()

Proof: It follows from the definition of the Stackelberg equilibrium.O

Theorem :

Consider the dynamic join load sharing, routing and congestion control problem
in distributed systems with two hierarchical classes, with fized initial time ty and
final time ty.

Let for each class ¢, H¢(t,X, ®, ¥,P(t)) is differentiable and convezr in (X, &<, ¥°)
€ (R,RC%,LS®) V t€ l|ty,t¢], for each fized value of (B*, T*) ¢ (RCk,LSk).

If (®*(t,Xo), ¥*(t,X,)) = (®*(t), ¥*(t)) € (RC,LS) s an open-loop
Stackelberg equilibrium and {X*(t), t € [to,tz]} ts the corresponding state trajec-

tory, then 3 Pe(t) : [to,ty] — R™ V ¢ continuous and piecewise continuously

differentiable vector functions, such that V t € [to,ts]:
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1i¥ tf . "
minimize g (t, X(t), (), T(1), tI"‘j{f.), WP (t))dt

Lo

with respect to  (®(t), T(¢t), B7(t), TP(¢), Q°(t))

such that X(t) — f(i}X(f.)? ‘I'(I‘.), ‘I‘{t]}
X(tg) = Xo
GH® i |
8{3-'}:13 _ Qﬁd](t} * qﬁisd‘r(f} =0 V L.S{f} - S]:}'{3
| Vo ad]
oH" 1 |
EYT I Qra(t)] = #g(t) =0V xlsd] € I}, [sd] € SD?
|7 rad] 4 ]
OH" ' _ |
81,.{“3 Eﬂ(t} . ?’bidf(tj =0 ¥ ld] € D'E]} ES*] = S'G
[ad] |
OH”
5— — Q0 4(t) >0 V[sd] € SD?
a¢ﬂ[3d] -
OH" , T
968 Qﬁd}(tj >0 Vrsd] e Hﬁd}, sd] € SD?
" mlsd]
DH” |
tfhbﬁ a Qﬁ](t) >0 V][de Dﬁ.}? 8.] € S5
[sd]
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Lf

Po(t) = —Vx H(t, X, ®(t), ¥(t), P5(¢))

PA(ts) = 0

r[sd]EHﬂdJ

¢]:[sdi(t) == \Ff [Sd] - SDG

v [s.] € 8¢

V¥ [sd] € SD”

Vv [s.] € S°

V w[sd] € II];, [sd] € SD”

VI[d eD?, [s] €S”

[s.]?

Proof: The Lagrangian for the less powerful class 5 is

= H°+ Y Qrgx|1-¢
[sd)€SD”

[sd]

Z ‘f’f[ad] g Z Qﬁ.]* L = Z ﬂl}ﬁd]

m[ad] El'.[ﬁ,d

[+ ]eS? d)eD?

“rith qﬁf[ad]" fﬁﬁiadp T,LJL_,&] :} D H ?T[.Sd] - Hﬁd], [Sd] 'E SD




Pontryagin’s maximum principle necessary conditions are:

X*(t) = £(t, X*(t), *(t), T*(¢))
X*(‘fﬂ) = Xﬂ
ﬁLE* G F 5H"'3* 3 _ [ B .
aqsﬂlsd {I}G[sd](i) =f = m — Q[sd](t)- * @ﬂisd](t) — () vl [S({] =
gL a ) e 8 Be
. * qj'.'r[sd](t) =0 = 3 — Q'[Sd](f) fff"ﬂ[,d](f) =10
aﬁfi[ad] B a(ﬁﬂ'[adj |
V x[sd] € IT7, ;, [sd] € SD”
@L'ﬂ* rﬁt _aHﬁ* o q O
i *Vea(t) =0 = | —5— — Qp(t)| x ¢ (t) =0
O g OYq !
V[d €Dy, [s] €SP
LP" SHP*
>0 = —5— - Q7 (t) >0 V[sd] € SD?
ﬁqfhd] 6¢f{3d‘ 2
aLP" GHP |
>0 = —Qrat) >0 Vr[sd] € IT} 4, [sd] € SD?
0871 0 g *
3% 3%
S s0 5 T 0t )>0 VideD:, [s]es’
0V Oy
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PA(t) = —Vx HP(¢t.X*, ®*(t), T*(t).P5(¢))

PP(t;) =0
AL r h
— =0 = ¢ )+ Y. #rat)=1 V[sd] € SD’
@Qiﬁﬂr] ﬂ[sd]E Hﬁd]
AL : r
— =0 = Z ﬂlf‘id](t)zl V [s.] € S°
9L, deD?
‘ﬁ’f{:d](t)r ‘ﬁ’ffﬂ}(t] = 0 vV wlsd] € Hﬁa}]v [sd] € SD”
Dz_z;-fi;]m >0 v [.d] € D, [s.] € 85

Theorem :

Consider the dynamic join load sharing, routing and congestion control problem
in distributed systems with two hierarchical classes, with fized initial time ty and
final time t;.

Let for each class ¢, g°(t, X, ®, V), f({, X, ®, ¥), are continuously differentiable
with respect to (X, ®,¥) € (R*,RC,LS), V t € [to, ts].

If (&*(t,X,X,), ¥*(t,X,X,)) = (®%(t), ¥*(¢)) € (RC,LS) is a closed-loop
memoryless Stackelberg equilibrium such that (®2*(¢,X, Xo), i‘“(t,X,Xu}] s con-
tinuously differentiable with respect to X € R™, YV ¢, t € |to,ty] and {X*(t), t €
to,t¢|} is the corresponding state trajectory, them 3 P¢(t) : [to,tf] — R™, ¥V ¢,

continuous and piecewise continuously differentiable vector functions, such that

V t € [to,ts):
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Mminimize

with respect to  (®(¢), T(¢), ®°(t), ¥2(¢), Q(¢))

such that

ty

g (t, X(t), (), ¥(t), ®° (1), W5(¢))dt

to

* 80,a(t) =0V [sd] € SD”

X(to) = X,
OHF
B Q[mg] t)
84:'?0[5:1’] J
GH"
Qe ()
0ny
8H®
—5— — Q,(t)
| Y |
SHP
— - Qf
a@g[sd] o
dHP
B
I'aqiiiﬂ'[mi]
OH”
—— — Q7 ,(t) >0
W

*

v [.d] e Dj,, [s] €SP

« i a(8) =0 Vr[sd] € TI

B

s

(t) >0 V¥ [sd] € SD?

~QUy(t) 20 ¥nr[sd € I}, [sd] € SD?

3
[sd)’

sd] € SD”

a(t)=0 V[d €D, [s]€Ss?
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P5(t) = —Vx H(t, X, ®(t. X, X,). ¥(t),X.Xo), P2(¢))

PA(ts) =0

Doeg(B)+ D @%a(t) =1 V [sd] € SD°

wlsd]eIl?
d]EZD Yha(t) =1 V [s.] € S°
Disd)(E)y Ooppay(t) 2 0 vV w[sd] € II% 4, [sd] € SD®
Pra(t) >0 v [.d] € Df;), [s.] € 8°

Bat)+ S ¢a(t)=1 V[sd] € SD?

- sd]eﬂﬁd]
> Whgt) =1 V [s.] € 8P
d)eDy
Borea(t), Borsa(t) =0 v wlsd] € II] , [sd] € SD”
8 a(t) > 0 v [.d] € D, [s] €SP

Proof: The proof is similar to that for the open-loop Stackelberg equilibrium.d

One of the disadvantages of using Stackelberg strategies is that the principle of
optimality does not hold for the leader. A modification of the Stackelberg strategy

concept requires that the strategies for the remaining time-to-go after each stage

should be optimal.
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5.3.2 Nonlinear Complementarity Problem Formulation

In this section, we formulate the dynamic two hierarchical class load sharing,

routing and congestion control problem as a Nonlinear Complementarity Prob-

lem (NCP).

Define the vector of class(3 congestion control, routing and load sharing fractions

as well as Lagrange multipliers:

Z8(t) = [ 80g(8) e Oty e QPg(8) oo W (8) o Q2 (8 ]

and the vector of class 3 derivative of its Lagrangian with respect to the con-

gestion control, routing and load sharing fractions as well as Lagrange multipliers:

| [ 8H" OHS
VIAE() = | | — Q2a(t)) - - 0", u))
aqﬁ’j[,d [d a(ﬁr[sd] .
1_‘*{’?[,&]“)— >, 'i’{ad](t
r[sd]EH[ d]
OH"
'(;5 ‘Qﬁ()) - 1‘2‘*«
0 sd] d]eD?,
5]
Theorem :

Consider the dynamic join load sharing, routing and congestion control problem

i distributed systems with two hierarchical classes, with fized initial teme ty and

final time ty.
If for each class ¢, H°(t,X,®, ¥,P(t)) s differentiable and convez in (X, ®°, ¥°)

€ (R,RC°,LS°) VYt € [ty,ts], for each fized value of (B*, B*) € (RC*, LS*),
then (®*(t),¥*(t)) € (RC,LS) 15 a Stackelberg equilibrium if and only if it
solves the following problem Y t € [to,ty]:
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Mintmize

/U Qﬁ{t’X{”}‘I’ﬂ{t}f 'I’ﬂ{f),'i'ﬁ(t),l]?'ﬁ“”(ﬂ

with respect to  (P(t), ¥*(t), @°(t), T(t)))

such that

X(¢) = (¢, X(t), B(t), T(¢))
X(to) = Xo

(®°(t), *(t)) € (RC*,LS*)
(84(t), ¥5(t)) € (RC?’,LSP)
VILP(ZP*(t)) « ZP*(t) = 0
MLAZPA(1)) 20

ZP*(t) > 0

X(t) = f(t, X(t), B(t), T(t))

X(to) = Xo

PA(t) = -Vx H?(t, X, ®(t), ®(t), PA(¢))

PA(ts) =0

Proof: After some algebraic manipulations, we find that the NCP: VL(Z(¢#)) x

Z(t) = 0; VL(Z(t)) > 0;

Z(t) > 0 with Z(¢) and VL(Z(t)) as defined above,

i1s equivalent to the Pontryagin’s maximum principle necessary conditions for the

follower. O
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5.3.3 Variational Inequality Formulation

In this section, we formulate the dynamic non-cooperative load sharing, routing
and congestion control problem as a Variational Inequality Problem (VIP).
Define the vector of class 3 congestion control, routing and load sharing

fractions:

(8°(8), ¥P(1)) = [ SEg(t) o S (8) oo vy (8) ]

as well the vector of class (3 derivatives of its Lagrangian with respect to the

congestion control, routing and load sharing fractions:

:
OH" OH” oH"

VHA(,X(t), ®(t), ®(1),P(t)) = o ¥ oy
| Ol fsaienr?, IPnlod) ¥l

Theorem :

Consider the dynamac join load sharing, routing and congestion control problem
in distributed systems with two hierarchical classes, with fized initial time ty and
final time t;.

Let for each class ¢, g°(t, X, @, W), f(t,X,®, ¥), be continuously differentiable
with respect to (X, ®,¥) € (R, ®, W) YVt € [to.ty]. If H® is continuously differ-
entiable and convez in (X, @, ¥°) € (R, RC,LS®), Yt € [to,ts], for each fized
value of (®*(t), ¥*(t)) € (RC*,LS*),

then (®*(t), ¥*(t)) € (RC,LS) s a Stackelberg equilibrium if and only if it
solves the following problem V t € [to,t4]:

357




L
T, /j'gﬂ(:..}qr.),@ﬁmW{f},@ﬂ"m._@rﬂm}d_t
to

with respect to (®*(t), ¥(t), ®°(¢), T4(¢)))

such that X(t) = f(t,X(t), ®(¢t), T(t))

(®°(t), ¥(t)) € (RC*, LS")
(®°(t), ¥4(t)) € (RC?”, LS?)

VHP(t,X*(t), ®*(t), ®*(¢),P(¢)) * (2, %) — (*(¢), T*(t))) > 0
Y (®,%) € (RC,LS)

X(t) = f(t, X(t), ®(t), ¥(t))
X(to) = Xo
P5(t) = —Vx H(t, X, ®(t), ¥(t), PA(t))

PP(ty) =0

Proof: If (®°*(t), ¥P*(t)) is a local minimum for the following minimization

problem
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MINIMLz ]tu (¢, X(t) Bor(4), WA (1) )dt

with respect to (®°(t), TF(t))

such that X(t) = f(t,X(t), ®(t), T(¢t))
X(to) = Xo

(®4(t), T4(t)) € (RCP,LS")

and ¢” is a continuously differentiable convex function over the nonempty con-

vex, closed and bounded set (RC”,LS”), then V t € [to, t4]:
gH™
> { 7— * (S — St (t) +

[sd]€SD” LAW
OHP* )
tY e (W — () +
rlsd)€II? & [sd]

[5d]

o HP*

f’:?u =

* (Plog) — «s‘»g'i;](m} >0 V(27 %) € (RC? LS
0

Another equivalent formulation is the following Theorem:

Theorem :

Consider the dynamaic join load sharing, routing and congestion control problem
i distributed systems with two hierarchical classes, with fized initial time ty and
final time L.

Let for each class ¢, g¢(t, X, ®,¥), f(t,X,®, W), be continuously differentiable
with respect to (X, ®,¥) € (R",®,¥) YV tE [ty,ts]. If H® is continuously differ-
entiable and conver in (X, ®°, ¥°) € (R™, RC°,LS®), Vt € [tg,tf], for each fized
value of (®*(t), ¥*(t)) € (RC*,LS*),

then (®*(t), ¥*(t)) € (RC,LS) s a Stackelberg equilibrium if and only if it
solves the following problem Y t € [to,t5]:
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Ly

MINIMmMLze g (¢, X(t), (1), ¥*(t). &7 (¢), TP (t))dt

to

with respect to (®(t), T(t), B°(t), T(t)))
such that X(t) = f(t,X(¢t), ®(t), ¥(t))
X(te) = Xo
(®2(t), ®2(t)) € (RC*, LS")
(B5(¢), BA(t)) € (RCP’, LSP)

d(t), ®°(¢)

EJ: ﬁ X
/tn g~ (t, X(t), o (), ¥(¢)

)dt =

; ty g
= . min f g7 (t,X(t),
($2(t), ¥P(¢t))e(RCA” LS") Jto

VIB(ZA(t) )« (ZP = ZP(t)*) >0 VWV Z°P >0

X(t) = £(t,X(t), (1), ©(¢))

X(tg) = X

PA(t) = —Vx H?(t, X, ®(t), ¥(t), P5(t))

PP(t;) =0

Proof: The NCP: f(z*)*xz* =0 f(z*)>0 z* >0

and the VIP: find z* such that f(z*)*x(z —2*) >0 Vz >0

are equivalent.O

$(t), 2°(t)
T(t), TP(¢)
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5.3.4 Maximum Principle for Separable Cost Functions

In this section, we derive the first order necessary and sufficient conditions for a
Stackelberg equilibrium on the path flows, when the cost function at each resource
depends only on the flow on this resource.

The partial derivatives of the cost function ¢g°(¢,X,®, ¥) with respect to the
path fractions f;"li"i[sd] can be written with respect to the link flows }ni and node
flows A

0g;(t X; 8. ®) _ 0g5i(t. Xij, Aiy) 9N
Lt AN, @mﬂ[m

65"1 (f Xlﬁﬂ?} o
o O + 90 * ¥f) * Liestat)

87 (t.X;,®,®) g7 (¢, X;,A;) AN
— 4
0 qﬁ[sdj 8}‘? 3¢'£[,d1

Il

_ 8¢ (t, X, Ay)

* (Vg (8) + ¥y () * ¥og) * Lienfuar(t)

1

ﬁg [sd (t Xﬂfsd], @ 11') 8gf[ad’|(t Xﬂfsd]?‘h'ﬂ[»!d]) a)‘ﬂ 5&]

e —

af‘-“bﬂ[ad] a o|sd] 5¢ Lsd]

Jé
agg[sd] (t Xn[uﬁ' u[sd]) 3

= o * (Yoa(t) + 70 (8) x¥g)
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59i{f. Xij @, ¥) ﬁgi—[t.}{;j. Aij) 35’&'5.-
— = D T B
O a) OA;; 0¥ aq)

3?5(t~ Kiiyihis)
2%

= X3

3 .
* ’“r;_s,](f) * :r{sd] * Lijensq)(t)

8g°(t,X;,®,®)  8¢°(t,X;,A;) N
— *
ON? e

3
OYe

897 (t, X, A)
N’

- ¥

mlsd]E Hid

Vo) (8) * Ol * Licnio (8)
]

B = e Y
3%’#[3&] 6}‘[&] oL [sd]
B @gfdr(fﬁx[.d] Arg) 5 (1)
N, 4l
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5.4 Application to Datagram Networks

In this section, we apply the methodologies developed in the previous sections
to datagram networks. We develop dynamic queueing models for the average
number of class ¢ packets in the queue and in the system (queue plus service)
for multiple classes and priority classes M/G/1 queunes. We also introduce the
idea of using linearized approximate dynamic queueing models, in order to have a
linear-quadratic problem for which there is extensive literature. We also suggest
using second order dynamic queueing models, when the traffic can not be described
only by first order models. Furthermore, we introduce Wiener process models for
modeling the stochastic system. Finally, we present some cost functions and state

constraints that can be used in the optimal control problem.

5.4.1 Dynamic Queueing Models for Multiple Classes

The general structure of the dynamic model introduced in this section 1s that the
number of packets in a resource increases by the number of arrivals to and decreases
by the number of departures from that resource. The departure rate should be
a nonnegative, nondecreasing, continuous and concave function uC = p(N) of the
number of packets in the resource, with uC = p(N) < N. A dynamic model for
M/M/1 queues, that was originally proposed by Agnew [4| and Rider [398] and was
later used in network optimization studies by Filipiak {158, 159, 153], Economides,
Ioannou & Silvester [137], Tipper & Sundareshan [485], is the following:

; N(t)
1+ N(t)
Filipiak has also proposed a dynamic model for M/M/oc queues:

N(t) = A(t) — uC(t)

N(t) = A(t) — pC(t) * N(¢t)

as well as for M /D /1 queues:

M) = M) = wlE) » (1 b Nyl (N(t))z)
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Next, we extend the above models for multiple class M /G/1 queues. The

average number of class ¢ packets in M /G/1 queues is given by

= = T %
ﬁ-‘fzp*+pc*p a Y ¢

2(1 —p)

where p¢ is the utilization for class ¢ and p = Y, p¢ is the overall utilization.

Solving the above system of equations for p°, we have the utilization for class

c as a function of the average number of packets for each class:

he

2
2N€ » (1—?5*;;2 ~- > Nk + J (1+ZM) QZNM(QFWE])
: ke K

I}

a

(2 — 22 % u?) x (IZN&* ,d (1—1—25‘5*)
5.

ke

-EZI\;;‘-’*(ZF#‘UJE:I)
ke

Then we propose the following dynamic model for multiple class M /G /1 queues:

i 2_1“':‘-[‘ t
Ne(t) = A(t) — pCl(t) x — D)
2 — 2% % pu?

ke

2
(1 —2Txp? - Y NH(t) + \ (1 ¥ Zﬂ-’km) ~ 23 Nk(t) x (2 — 22 = ﬁ)
.L:

*

= _
(1 ~ Y N*(t) + J (1 +y N‘“(t)) ~ 2 NE(t)* (2~ 2% ,uz})
ke

ke

For exponential service, general service and Processor Sharing ( F.S.) discipline

and deterministic service times, the above model gives the following dynamic mod-

els:
Ne(t)

Ne(t) = 2%(t) —pC(t) * ——=—%
1+ ) N*t)
=

M/M/1

w® * N¢(t)

Ne(t) = X(t) — uC(t) » e
1= * Nt
o

class discrimainating P.S.
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IN(t) * (— Y N(t) + Jl + (Z Nk{t})y)

k i

Ne(t) = AS(t) — pnC(t) = M/D/1

1 — > N*(t)+ \! 1+ (Z N‘*(t})

ke ke

Also, for multiple class M /M /oo queues we have the following dynamic model:

NE(t) = Xe(¢) — wC(t)y= N°(t) M/M/oo

5.4.2 Linearized Dynamic Queueing Models

Although the above dynamic queueing models describe accurately the dynamic
behavior of the queue, they depend nonlinearly on the average number of packets
in the system (except the M /M /oo model). Therefore the analytical solution of
the dynamic optimization problem usually becomes intractable. Next, we propose
the linearization of the above dynamic queueing models, that gives simpler models.

For example, the linearized multiple class M /M /1 queueing model is the following:



j.',;r.rc { ¢ )

U

%

&

Tt — e
et 1+ Y N*(t)
k
Ne¢ s Ne¢
AS(t) — puC = — nC — —
e g P
ke ke
1+ Y NF
N¢ f k+#c
)l.f:(f)_ﬁ“f*l_l_?——k_#c* O\ 2
T e
Ne :
+u (' * Z =W (N*(t) - NF)
: (Hzm)
}hc
uC =) A
Xe(t) — uC Zi‘f“ -
14— -
,uC’—Z)\
k
1 A€
—unC Ne(t) — -
1C * Z)tk Ne(t) S W
{ ks ke K
ﬁC—Zlk
k

A9 1 )
+pC E * Eyi—
Gol JIJ,.GF E .:’kﬂ ’ L E A" ’ ( )

" 1 4+ —=
uC —>) A"
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Finally, we have the following linearized model for multi-class M /M /1 queues:

Z}.k AC* uC — Z)’u”
PR ) =24 2 = ('~ TA** « N° T— % Y Nt
e puC £

The above model satisfies the steady-state flow conservation

A DT T N
;’I.E—)hc# : :(‘L{(_T—T}L'I‘ :-:F— , 2 *Tﬁ_'kc;} h;'c:
uC 5 | qe & pC — ) X
b

Similarly, we may derive dynamic models for the average number of customers

in the systems (queue plus service), or in the queue, for multiple class, priority
class M/G/1 queues.

Another approximate model for multiple class M /M /1 queues is the following:

Nﬂ(ﬂ = A(t) — puC =

c l c
~ A(t) — pC L x N°(t)
s .

O - LA
ke
= A% Juc Z}ak Ne(t

The above model satisfies the steady-state flow conservation

= (pC — Z/\k #NV® & Ne=

A
nwC — Z)\k
k
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The link length becomes

1
6 Ry o ATE - 1 J”_C
b= [@f\rf ((#C %}1 P i) )] - ,uf.‘_z/‘xk - Zlk -
# T .
#C
L 1+ Y N*
B wC B &
B Nt puC
1 ke

_1-1'-21‘%
e

This result explains why the shortest route routing achieves good performance
(see section 5.6.5).
After the model linearization, the system state is described by the following

state equation

X=AxX+Bx*U X i given

with cost function

ts 1
/IE#(XT*Q*X;UT*R*U)dt
to

where A4, B,(), R are suitable matrices. Thus, we can use results from the
optimal control theory on linear-quadratic problems, to solve the joint load sharing,

routing and congestion control problem.

5.4.3 Dynamic Queueing Models for the Packets in Queue

In future high speed networks, we will have information only about the average
number of packets in the queue (not both in the queue and in service), due to the
enormous number of packets that will be in transit into the network. Therefore, it
1s also useful to have dynamic queueing models with state the average number of

packets in the queue.
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Here, we introduce a dvnamic queueing model for the average number of packet
in the multiple class M /G/1 queue. The average number of class ¢ packets in queue

for a multiple class M /(G /1 queue 1s given by

pralxpu’
NG =g % V¢
¢ 2(1 — p)

Solving the above system of equations, we have the utilization for class ¢, p°,

as a function of the average number of packets in queue for all classes

2
2Ng * (I! * (L +ZN$—,\(ZN$) —I—QZNQ *F#,uz)
c _ -k k

ke

2
@? % p *( Z‘% J(Zﬁé}) —FQZP&"Q*F*,{LE)
k k

Then we propose the following dynamic model for multiple class M /G /1 queues:

2Ng (1)
No(t) = Xe(t) — uC(t) » =2

22 % p?

L
Emuzwg_\(zwg) L2 N T a
ke ke k

*

2
—ZNS*\(ZNE) +2) N@xa?xp?
k ke

ke
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For exponential service, general service with Processor Sharing and determi-

nistic service time, the above model gives the following dynamic models:

N§(t) = A(t) — uC(t) * N(t)

2
24+ > N§ - \ (Z Ng;) +4) N9
_ k N\ k k

M/M/1 or P.S.

: 2
~ 3 NE4 ‘ (z Ng;) +43° N@
k N k k

Ng(t) = X(t) — uC(t) x 2NG(t)»

2
1+Zﬁfg—\(z_ﬁr5) +2) N9
N k k k

= M/D/1
rk r
- > N§+ \ (ZN$> +2) N@
k k k
Note that for single class, we have:
: —No(t) + 1/(Ng)? + 2Ng * 22 x 2 |
No(t) = A(t)— pC(t)* ;1'2*,[{2 M/G/1

—No(t) + +/(Ng)? + 4Ng

Mt) — uC(t) * :

ilir,/M/l or PS

A
oS
I

=

4

.
|

A(t) — pC(t) * (—Nq(t) +/(No)? + QNQ) M/D/1
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5.4.4 Dynamic Queueing Models for Priority Classes

In this section, we derive dynamic models for queues with priority classes. For
Poisson arrival and exponential service times. The average number of packets in

the system of the high priority class a is given by

and the average number of packets in the system of the low priority class 3 is
given by
P.ﬂ x (1 — pc:} fs pnpﬁ * ptiﬁ_fflluﬂ
(1—p*) (1 —p*—p°)

Solving the above system, we have the utilization of class a as a function of

NP =

the average number of class a packets in the system and the utilization of class 3

as a function of the average number of class a and 3 packets in the system

o e
P = 1< Na
H i.’\“i"ﬁ
g = iﬁ
(1+ Neo)x(1+ N« + N8)
pue

[hen, we have the following dynamic model for the high preemptive priority
class a:

_ Ne(t)
14+ Ne(t)

oY

P

and for the low preemptive priority class £3:

NP
Pﬁ — 3
(1+ No(8)) % (1 + N*(¢) « — 4+ NB)

e

Next, we give a dynamic model for the average number of packets in the queue.

The average number of packets in the queue of the high priority class a 1s given

by
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Ng =
QT 1 pe

and the average number of packets in the queue of the low priority class 3 1s
given by
p7 = (p™ + pP) * (1 — p®) + p° % p®  p | p®
(1 —p) % (1= p* - pf)

Solving the above system, we have the utilization of class a as a function of

rid
_h' Q —

the average number of class a packets in queue and the utilization of class 3 as a
function of the average number of class @ and [ packets in queue
~N§ +,/(N§)? + 4N§

2

L

p —_—

5 p% * i/ + (1 — p*) = (p* + Nj)
pro=i = : T
2(1 = p=)

Voo * 1P u 4+ (1= p2) % (p® + N§)? + 4N5(1 — p°)?
| 2(1 — p*) |
Then the dynamic model of the average number of packets in queue for the

high preemptive priority class a 1s

i
[}

~Ng(t) + /(Ng(t))? + 4Ng(t)

Ng(t) = A%(t) — poC(t) * :

and for the low preemptive priority class 3

=

CpT P s+ (1= p%) * (p% + NG(t))
2(1 — p*)

—_—
|

NO(t) = X8(t) — pPC(2) »

+\/Loﬂ w8 fpe + (1 — p=) % (p + NE(£))]2 + ANS(£)(1 — p*)*
2(1 — p*)

Similarly, for Poisson arrival and exponential service times, we have the follow-
ing dynamic model of the average number of packets for the high non-preemptive

priority class «:
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N§(t) = Ao(t) — pC'(t)

s Ty 4 AT AT ATid v 19 T ra 1 ATD rae ATO
Ng* (NG + No)+ /INg * (N3 + N3)2 + 4(N§)* = (Ng + Ng + N§Ng)
2(N3 + Ng + NgNj)

%

and for the low non-preemptive priority class

X

. 4mnt:-::!:: Al
Ng[f} =5 lﬁ(t} — u(C'(t) * ( Z: Ll — Pﬂ)

54.5 Second Order Dynamic Queueing Models

In this section, we suggest using a second order model in optimization of systems
with bursty traffic, where the variance of the number of packets can be large.

Next, we suggest using the second order model by Rothkopf & Oren [407], and
Clark [109]:

Var(N(t)) = A(t) + pC(t) — nC(t) * mo(t) = (2N (¢) + 1)
where
(N(t))*

fﬂﬂ—( N () )wwmm—wm
o Var(N(t))

5.4.6 Wiener Process Models

In this section, we introduce a Wiener process model for flow that fluctuates with
a large variance around its average value. We introduce a stochastic term for the
arrival and departure rate in the dynamic models presented in the previous section.

For example, the dynamic model for M/ M/1 queues becomes:

| Ju : N¢ dw;
) = (m) —a’(t) % dtﬂ) B (“C(”* 1+ ‘.‘.«":f)*"“(t) - e fﬁb)
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where a®(t) and b°(t) are the standard deviations of the arrival and departure
rates for class ¢, and wi(¢) and w{(?) are Wiener processes.

We can rewrite the above model as

N¢(t)

1 -+ Z ﬁo‘rk(f)
k

— b(2) * Egb(f]

Ne(t) = (A(t) — a*(t) x €,(t)) — | nO(t) *

dwt(t) dwg(t)

where £°_(t) = ET and £¢,(t) = T

random variables.

are zero mean, unit variance normal

5.4.7 Cost Functions

In this section, we introduce cost functions that can be used in the dynamic prob-
lem. Desired properties of a cost function are to be: 1) nonnegative, ii) nonde-
creasing, i11) continuous and iv) convex.

We may consider as cost function the total time packets spent on each network

resource 1J

gu ad] / ﬁ'u[sd t)dt
to

blocking at resource 7

tJl ’
Jiiled] = Bi,q(t)dt

to

blocking at path m[sd]

gfr[.scﬂ :/ H Bv,_;r ad] t

to i€ m[sd]
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rejected flow at resource 13

Cf i
g:j[adf = ft fﬂﬂ,:b.‘r[sd](t}df
a

rejected flow at source [s.]| for destination |.d|

t ¢ 7
Jojsd) = | Polsd)(t)dl
0

5.4.8 State Constraints

In this section, we define flow control constraints on the number of packets
Nijisa)(t) > 0 that can coexist at the network resources. For clear exposition, we
consider only one class in the network. The case of multiple classes follows trivially.

The total expected number of packets on every link 7 should be less than the

buffer (or window ) size of link 17, Z Nijtsa)(t) < Wis(t).
[sd]
Also, in order to guarantee an upper bound on the delay that packets may

suffer from source to destination, the total expected number of packets on
every path 7[sd] should be less than the end-to-end window size on path =[sd],

Z Z Nijts1di)(8)* Lijenisa)(t) < Waisq, Where 1ijenfsaq)(t) 1s the indicator function
[51"-{1] EJ
that link ij is on the path 7[sd].

Although controlling the total number of packets in the network is optimum
from the system point of view, it may also be unfair to some users. Some aggressive
users (a source, a destination or a virtual circuit) may congest the network. If the
flow and congestion control operate without paying attention to the identity of
packets, other users may be unfairly penalized. So, we point out three identities
that should also be controlled for fairness reasons:

1) each source:

In order that source [s.] does not monopolize the network resources, the fotal
expected number of packets originated from node [s.] should be less than the

network "capacity” for packets from source [s.], z E Niial(t) < Wiy, Also, in
[d]
order that source [s.] does not monopolize path 7|sd], the total expected number
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of packets originated at node [s.] on path w[sd| should be less than the path’s

-

"capacity” for packets originated at [s.], D > Nijra,1(£) * 1ijentaa(t) < Wigintsal-
dy] 1

Finally, in order that source [s.] does not monopolize link ¢7, the total expected
number of packets originated at node [s.| on link 77 should be less than the link’s

"capacity” for packets originated at |s.], Z Niitsa)(t) € Wie 15
[-d]
2) each destination:

Similarly, in order that destination |.d| does not monopolize the network re-
sources, the total expected number of packets destined to node [.d| should be less

than the network "capacity” for packets to destination |.d|. E Z Nijtsa)(t) < Wia.
[s.] 17
Also, in order that destination |.d| does not monopolize path 7|sd|, the total ex-

pected number of packets destined to node [.d] on path 7[sd] should be less than
the path’s "capacity” for packets destined to [.d], Z Zﬁ"’t-j[,ld}{t} * Liiensq(t) <

1) -
W 4.x1sa)- Finally, in order that destination |[.d| does not monopolize link 17, the

total expected number of packets destined to node [.d] on link :7 should be less

than the link’s "capacity” for packets destined to [.d], Y Nia(t) < Wiai;-
[s.]

3) each class:

In order that [sd] packets do not monopolize the network resources, the to-
tal expected number of [sd| packets should be less than the network capacity for
sd] packets, Zﬁrij[.gd](t) < Wieq. Also, in order that [sd] packets do not mo-
nopolize path L-;rsdﬂ, the total expected number of [sd] packets on path w/sd]
should be less than the end-to-end window size for [sd] packets on path m[sd],

Z Niitsd)(t) * Lijerisa)(t) < Walsd) sa)- Finally, in order that |sd]| packets do not mo-
i]

nopolize link 17, the expected number of [sd| packets on link 2, should be less than

the buffer (or window) size for [sd] packets on link 77, N;ja(t) < Wijna(t), with
> Wiita(t) > Wis(2).
|ad]
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5.5 Application to Virtual Circuit Networks

In this section, we apply the methodologies developed in the previous sections to
virtual circuit networks. We develop dynamic queueing models for the average
number of packets coupled with dynamic queueing models for the average number
of virtual circuits. Furthermore, we introduce Wiener process models for modeling
the stochastic system. We also present some cost functions and state constraints
that can be used in the optimal control problem. Finally, we propose a class of

heuristic link lengths that can be used on-line.

5.5.1 Dynamic Queueing Models for Multiple Classes

We consider two levels of the flow in virtual circuit networks. At the virtual level,
we model each network resource as an M /M /oo queue. That means that an infinite
number of virtual circuits may coexist at every network resource (see section 5.6.2).
Then the average number of class ¢ virtual circuits is described by the following

dynamic model:
VE(t) = v°(t) — 65(¢) * V(2)

At the packet level, we model each network resource using any model among
those proposed in section 5.4 for datagram networks. For example, the average
number of class ¢ packets for M/M/1 or P.S. queues is described by the following

dynamic model:

Ne(t) = ré(t) « Vo(t) — pC(¢)

where 7°(t) is the average packet arrival rate per virtual circuit of class c.

Next, we give several dynamic models for virtual circuit networks for different
optimization formulations. For easy of exposition, we consider dynamic models
only for links.

1) The routing decisions are done at each source node [s.] on the path flow
space. Therefore, the total arrival rate to link 77 is the sum of all path flows that
pass through this link:



Vijlea)(t) = E] Visd] () * Pnisd)(t) * Lijenisd)(t) — Ofsd)(t) * Vijiaal(t)
x[sd

11) The routing decisions are done at each network node on the link flow space
and the virtual circuit duration is very small. Therefore the virtual circuit depar-
ture rate from a link becomes arrival rate to the next link. The arrival rate to the
outgoing links s7 from the source node [s.| is the fraction of flow that is routed
through that link. The arrival rate to an intermediate link 27 1s the departure rate
from the ingoing links to node ¢ weighted by the fraction ¢;j,4 that is assigned to

outgoing link 17 from node i:

T.‘;jg,,ﬂ(t} = "]f'[sd](t) * ifl’s;[sd]{f) 5[ (t} I-'n.r[s’-'i]( )

I:'Zj[.,d]{i) = Y Sa)(t) * Viigaa(t) * Gijiaar(t) — Sraa)(t) * Vijraa)(t) s # 0

kel(z)

111) The routing decisions are done at each network node on the path flow
space and the virtual circuit duration is very small. Therefore the virtual circuit
departure rate from a link becomes arrival rate to the next link. The arnival rate
to the outgoing links s7 from the source node [s.| 1s the sum of all fractions of path
flows that are routed through that ink. The arrival rate to an intermediate link 73
1s the departure rate from the ingoing links to node ¢ that 1s assigned to outgoing

link 27 from node 1:

lﬂj[sd] Z i .ui](t) * {i'ﬂ[sd](t) * ]-sj-’:rr[:rd ( ) — sd](t) .!j[.!d]( ]
7| ed]
_:r[a-:i (t} = Z Z 5[5&' th ad]{ ) * ]-Fr:t'E'.rr.!:mf}(i) e ]-'ij'Eﬂr[sd](t)
kel(1) wisd]

—O(sq)(t) * Vijaq)(t) s #1

iv) A dynamic model for the paths (virtual and not physical links): The average

number of virtual circuits for [sd] on path w[sd] is:

IY’:r'.rr[.md](t) — Tlsd}( ] * qﬁw sd] ( ) - 5[3{{( :I *x V, [sd](t)

v) The routing decisions are done at each network node on the path flow space

and the virtual circuit duration is very long. Therefore a virtual circuit stays at
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each network link for long time, so we can assume that its arrival rate does not
change drastically over time. Then the arrival rate at each link is the sum of path

flows that pass through this link:

Plt) = Z E Visd) () * Onsa)(t) * Lijenisa)(t) —08(2) x Vij(t)
[sd] m[ad]
vi) The routing decisions are done at each network node on the link flow space.
However, if a virtual circuit is rejected with probability @,,/.q (for congestion
control reasons) at node n, then this virtual circuit is reestablished from the source.

Therefore, the successful arrival rate at the source [s.] is ¥j,a(t) * [(1 — @nofsallt))

T1

Virtual circuits may also be rejected at each network link for congestion control

Ieasons.

1}5j1:3d]( T[;n:i’ H(]- mnar_sd ) * d}s“sd](t) =5 é[sd](tj * Lr;_’.r[adf(t}
Vijteal(2) Z 8ad) (£) * Viitsa(t) * Dijtea(t) — Saar(t) * Vijpaa)(t) s # i

kel

Next, we give several dynamic models for the packet level for different opti-
mization formulations:

1) The routing decisions are done at each network node on the link flow space
and the virtual circuit duration is very long. Then a virtual circuit stays for long

time at each network link:

N:'j[ad}(t) = Tl t) * Vijpaa)(t) — 1C35(E) * pijisa)(Ni5(2))

ii) The routing decisions are done at each network node on the link flow space.
The packet departure rate from a node is routed to an outgoing link from that

node:
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:"‘;f's;gm](f) = Tlad)(t) * Vijiaq)(t) — 1 Coj(2) * pyjisa)(N,;(E))

Nijsa)(t) = Y 1Crilt) * prijear(Nri(£)) * ijea)(t)

kel(i)

—ﬂ’f'ij(f) * P::j[sd](Nij(f)} § F 1

ii1) The routing decisions are done at each network node on the link flow space.
The packet departure rate from a node is routed to an outgoing link from that node.
However, packets may also fail transmission on link k¢, that has error rate e;;(t) and
be retransmitted from the source node |s.] after a time-out period 7. So, the source

node |s. receives an extra [sd| flow, Z pCri(t — 7) * ei(t — 7) *prifaa)(Nri(t — 7)),
fea
due to packet failures at links k7 inside the network. Then the source node |s.|

routes a fraction @,;[,q4)(¢) of this low to its outgoing link sj. Any other node : # s,
receives the successful packet flow, from its input neighbors and routes a fraction

®;jsq)(t) of this flow to its outgoing link 7.

P;Tsj[sd](t) = Tsa’](t) * If;;,r[.td}(t}‘f'

+Z WC(E — 7) * it — T) * Prifsd)(Nai(t — 7)) * Byjfsq]
ki

_ﬁ'csj(t) s st[sd}(Na.f( )]

t
Nijtsa)(t) = D pChi(t) = (1 — ei(t)) * prifoa)(Nii(t)) * ij0a)(2)
keI(i)

—pCij(t) * pijaa)(Nij(t)) s #

1v) The routing decisions are done at each network node on the link flow space
and the virtual circuit duration is long. The packet departure rate from a node
1s routed to an outgoing link from that node. However, packets may also fail at a
link k2, that has error rate e;(t) and be retransmitted from the source after time

T s
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Nojisdl(t) = ma(t) * Vijpa(t) + X rea)(t) * Viigoa () * enice)
ket

iﬁr@j[;d](t} = Z Tls % Iﬁcf[a&’]( ) (1 = Ehi{t}) * (;ézj[sd](t)

kellr)

—uCi(t) * pijrsa)(IN4;(E)) s # 2

v) The routing decisions are done at each network node on the path flow space

and the virtual circuit duration 1s long.

Niitsai(t) = D isa(t) * Vapaa)(t) * Lijentsa) — #Ci5(t) * pijtaa)(Nis(2))
misd]
vi) Finally, if we do not consider classes

Nﬁj“) = 7(t) * Vi;(t) — nCy;(t) * pi;(Ni;(2))

5.5.2 Cost Functions

In this section, we introduce cost functions for the dynamic problem. We
consider as cost function for class ¢ and source-destination |sd|, at time ¢, at

network resource 7. the total time packets spent at 13

gfj[,d](tax(t)atl'(t]} ¥(t)) = ;;,1'{_“«:] * Nf[,d](t)

the total time virtual circuits spent at 27,

Gisraa) (82 X (1), B(2), (L)) = CF10q) * Viisq(t)

the rejected flow cost at 1y

95irsa) (8, X(2), B(2), ¥(2)) = Ol * Agsa)(2)

the negative throughput at 13
iea) (8 X(2), (1), ¥ () = CF 1oy * BC5 * 1501 (Nij(E))
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5.5.3 Length of a Link

In previous sections, we found that jobs are sent to destinations of minimum length
and are routed through minimum length paths. At that time we defined the lengths
to destinations, the path lengths and the rejection lengths. In this section, we
introduce some lengths that are very simple, however they are based on heuristic
arguments.

For dynamic (or adaptive) load sharing, routing and congestion control, we
need to know the state of each system resource. We define as length of a system
resource the load on this resource. So, if a resource 1s lightly loaded, then its length
1s small, while 1f the resource 1s heavily loaded, then 1ts length 1s large. Then the
dynamic algorithm chooses the resource with the minimum length. Depending on
the imnformation we select about the state of each system resource, we may define
different lengths of the resource (link, node, computer site, etc.).

Next, we define the length of a resource at time ¢ as a convex combination of

1ts current length at ¢ and its expected length in the future:

Eij(t) = Et'j(f) * f:—'ﬁ;rrem(f\] + (1 - Eij(f)) * Ei—uture(f} 0 <e<1

Based on models presented earlier, we define some simple approximations for

these lengths:
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EF?_-I?‘TEﬂE‘f_ —
) { } Iu(-rulr\t}
= T3;(2)
| : if uCi(t) > r(t) * Vij(t)
, 1T f 4 T 7t
— ﬁcu(t}—r{tj#lxu(t} L J
i B 0. W
| 1 if () > Aij(t)
1t (O 9
= < pCi(t) — Ay;(t) J J
o 0.W

KCi5(t)
,- nCi;(t) | | R
= ! [uCi(t) —r(t) * Vi;(2)]? if wuC(t)i; > r* Vii(t)
X P Q. W
( Cij t ' r
= 9 [ELC"&)—{;”(t)]E if 1 Cij(t) > Aij(¢)
| R 0.W.
nCi;(t)
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1
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ff_uture 1 + I;j{ f)
iJ

nCi;(t)
: if wCii(t) > r(t) * [1+ Vi;(t)]
- 1wy " 7t
_ ) G —r) x 1+ Vi(e)] T r i(t)]
. x o.W.
| : if £Cy5(t) > Aij + r(t)
it (s = Xos 4
= ] uCylt) = Ayt —r(e) T :
o0 0.W

5.5.4 State Constraints

In this section, we define constraints on the number of virtual circuits V4 (£) = 0
and packets N;jj,q(f) = 0 at the network resources.
The total expected number of virtual circuits at every link 7 should be less

than the virtual circuit "capacity” on link 27 (for example the number of buffers),

Z'[u[sr.ﬂ {: QI_]'[: )

[sd]
Although controlling the total number of virtual circuits and packets in the

network 1s optimum from the system point of view, it may also be unfair to some
users. Some aggressive users (a source, a destination or a virtual circuit) may
congest the network. If the flow and congestion control operate without paying
attention to the identity of virtual circuits and packets, other users may be unfairly
penalized. So, we point out three identities that should also be controlled for
fairness reasons:

1) each source:

In order that source [s.] does not monopolize the network resources, the total
expected number of virtual circuits originated from node [s.] should be less than

the network "capacity” for virtual circuits from source [s.], Z z Viitsa)(t) < Q4
[.d] 7
Also, in order that source [s.] does not monopolize path 7|sd|, the total expected

number of virtual circuits originated at node [s.|] on path :rr[sd] should be less

than the path’s ”capacity” for virtual circuits originated at | Z Y Vistaay)(
1]
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Lijersa)(t) < $is].x(sq)- Finally, in order that source |s.| does not monopolize link
1], the total expected number of virtual circuits originated at node [s.] on link

tJ should be less than the link’s "capacity” for virtual circuits originated at [s.],
> Viital(t) < Qpors-
[.d]

Similarly, we may impose restrictions on the number of packets as for datagram
networks (see section 5.4.8).

2) each destination:

Similarly, in order that destination [.d| does not monopolize the network re-
sources, the total expected number of virtual circuits destined to node [.d]| should be

less than the network "capacity” for virtual circuits to destination [.d], Z Z Viilsq)(t)
[s.] )
< 4. Also, in order that destination [.d] does not monopolize path n[sd], the to-

tal expected number of virtual circuits destined to node [.d]| on path 7w[sd] should be

less than the path’s "capacity” for virtual circuits destined to [.d], Z Z Viitsya)(t)*
181.] 1]

Lisentsd)(t) < Qg xfsq)- Finally, in order that destination [.d] does not monopolize
link 17, the total expected number of virtual circuits destined to node [.d] on link

tj should be less than the link’s "capacity” for virtual circuits destined to [.d],
Y Vistaa(t) < Qpajis-
[«

Similarly, we may impose restrictions on the number of packets as for datagram
networks (see section 5.4.8).

3) each class or each single virtual circuit:

We can consider each virtual circuit as a different class, therefore the following
restrictions which apply for each [sd] class of virtual circuits may also apply for each
virtual circuit. So, in order that [sd] virtual circuits do not monopolize the network
resources, the total expected number of [sd] virtual circuits should be less than the
network capacity for [sd] virtual circuits, Z Viitsa)(t) < Qpuq). Also, in order that
sd] virtual circuits do not monopolize patlfl 7 sd|, the total expected number of

sd] virtual circuits on path n[sd] should be less than the end-to-end window size

for |sd| virtual circuits on path w[sd], Z Viitsd](t) * Lijentsd](t) < Qafsd)[sa)- Finally,
¥ ]
in order that [sd] virtual circuits do not monopolize link 77, the expected number
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of [sd] virtual circuits link i7, should be less than the buffer (or window) size for
sd| virtual circuits on link 7, Vistealt) £ 8iun(2):
Similarly, we may impose restrictions on the number of packets as for datagram

networks (see section 5.4.8).

5.6 Example

5.6.1 Introduction

In this section, we solve the decentralized dynamic joint routing and congestion
control problem for multi-class multi-destination dynamic virtual circuit networks.

Two of the most important algorithms for efficient virtual circuit network con-
trol are routing and congestion control. Routing decides which route the virtual
circuit will follow from source to destination. Congestion control prevents network
overload by controlling the virtual circuit traffic entering the network. Routing and
congestion control are strongly related problems and each affects the other. For a
more accurate model and better network performance, both problems should be
modeled and solved simultaneously. Such an approach however may increase the
modeling and optimization complexity. Previous studies on virtual circuit network
control usually concentrate on the routing problem.

In virtual circuit networks, a call set-up packet, which may be part of the first
packet of a message, initiates the establishment of a virtual path from source to
destination. All other packets belonging to this message follow the same route
which remains fixed for the duration of the call. In this way, a virtual circuit
provides a reliable logical channel with packets delivered in order. The route
selection for each virtual circuit is the virtual circuit routing problem.

First, we introduce a nonlinear dynamic queueing model for virtual circuit
networks that considers the dynamic interaction among the multi-class multi-
destination virtual circuit and packet processes. We also define a multi-objective
cost function of rejecting, setting up & maintaining virtual circuits, as well as of

the packet delay and throughput.
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Then we formulate the joint problem as an optimal control problem. Necessary
optimality conditions are provided by Pontryagin’s maximum principle. Sufficient
optimality conditions based on the convexity of the Hamiltonian function are also
given. For the finite horizon, the optimal controls can be found after numerically
solving a Two-Point Boundary-Value Problem. For the long-run stationary equi-
librium, we derive the state dependent routing and congestion controls. We show
(via simulation) that when the updating period is not much larger than the mean
interarrival time of virtual circuits, this state dependent routing algorithm and a
shortest queue routing algorithm are showed (via simulation) to be superior to the

optimal quasi-static routing.

5.6.2 Virtual Circuit Network Model

Consider an arbitrary network topology with multiple classes of virtual circuit
traffic between multiple source-destination pairs (Figure 5.1)

[nstead of introducing an extra notational index for each class of virtual circuits,
we can consider each class ¢ of virtual circuits between a source-destination pair
sd] as being established between a fictitious [s.d.] pair, where physically s. = s and
d, = d, ¥c. The queueing models that we introduce in this section can handle this
substitution. Note also that one extreme case is to consider each virtual circuit as a
different class. Another extreme case is to consider all virtual circuits as belonging
to the same class. Also, in contemporary networks, the nodal processing delays are
negligible compared to the transmission and propagation delays and therefore they
were ignored in network optimization and control procedures. However, in future
high speed networks, the transmission delays will be very short and comparable
to the nodal processing delays. Therefore, packets will be queued not only in
front of the links but also in front of the nodes (Figure 5.2). However, instead
of introducing extra variables to describe the state of each node, we can consider
each node 7 as a link i;7,. So, in the following analysis, the word "link” may mean
physically either a link or a node.

Virtual circuits arrive at a source node s (according to a Poisson distribution)

destined for a destination node d with rate vi,4(t) > 0 (Figure 5.3).
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Figure 5.1: A Virtual Circuit Network.




Figure 5.2: A network node.
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Figure 5.3: Virtual circuit routing and congestion control
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For congestion control reasons. a fraction Oofsdi(t) € 10,1] of these externally
arriving [sd| virtual circuits is rejected, while the remaining virtual circuits are
accepted into the network. A fraction @,p,q(t) € [0,1] of the externally arriving
sd] virtual circuits are routed from node s to its destination node d through

path 7[sd], where &,,4(t) + Z ®risd)(t) = 1. Then the rejected [sd] virtual circuit
misd]

flow at the source node s is v, (t) * @,1,q)(t) and the [sd] virtual circuit flow on
path m|sd| is 7;,q)(¢) * @,,4)(t). The above procedure happens for every source-
destination pair in the network. Therefore the [sd] virtual circuit flow on link 17

is the sum of the |sd| virtual circuit flows of all paths traversing this link, i.e.

Z T’sd}[t) * 'Cbirad](t} * lr'_}E:T[ad]{f}-
[ad]
Finally, each [sd] virtual circuit stays in the network for some time duration

exponentially distributed with mean 1/8,4(¢) > 0 and then terminates. So, we
can model every link ¢j for the [sd] virtual circuit process as an M /M /> queue

with arrival rate Z Visd)(t) * Ox[sd](t) * Lijenlsq)(t) and mean service time 1/6(,q)(t)
mlsd]
(Figure 5.4) We note that thousands of virtual circuits can coexist on a link (well

within today’s technology capabilities) [247].

Subsequently, we will introduce a state space approach to model the dynamic
evolution of the virtual circuit processes. The expected number of [sd]| virtual
circuits on link 17 at time ¢, Viji,q(t) > 0, increases during At by the expected

number of /sd| virtual circuits that arrive during this period, Z Yisd) () * Orpsq(t)*
misd)
Lijenisq)(t) * At, minus the expected number of [sd] virtual circuits that depart

during this period, é,4(t) * Vi;i.a(t) * At (Figure 5.5). So, the [sd] virtual circuit

process at link ¢ is described by

Ej[sd](t T ﬁt) — Hj[sd](t) T Z T,d](t] * (ﬁr[sd](t) s ]-:'jEfr[:d](t) x At

‘n‘[ad]
—0,q)(t) * Vijra)(t) x At Vi V [sd]
The expected number of [sd] virtual circuits on every link 77 at time ¢, Viitsa)(t),

15 a continuous function of time, so let us define
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Figure 5.4: M /M /oo model for virtual circuit process.
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Figure 5.5: Virtual circuit processes.
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N . Yiilsditt AT = Vil
Vijleq)(t) = lim. — RE |

Therefore the [sd| virtual circuit process on link 7 at time ¢ is described by

Y i W |sd]

Viitsdl(t) = D Yiaa)(t) * afaa)(t) * Lijenlsa) () — Spsa)(t) * Vijiaq(t) Vi V¥ [sd]
[ sd]

Next, we describe the evolution of the packet process into the network. Let
rial(t) = 0 be the packet arrival rate per [sd]| virtual circuit at time ¢ (Poisson
distribution) (Figure 5.6) If there are Vi,q(t) [sd] virtual circuits on link ¢ at
time t, then the total [sd| packet arrival rate to link 2 1s r,q(f) * Vijisa)(t), since
all packets belonging to a virtual circuit are transmitted through the same link.

Let the packet service requirement be exponentially distributed with mean
1/p > 0 and the service rate at link 17 be C;; > 0. Then the mean packet service
time at link 77 1s 1/p;; = 1/(p * C;;). If the network 1s also controlled by link-
by-link error and window flow control, then we can derive the equivalent mean
packet service time at link 15 [137]. Packets are serviced according to first-come-
first-served or processor sharing scheduling. Katevenis [247] and Morgan 333
preallocate buffer space to each virtual circuit in every node and multiplex packets
from different (thousands) virtual circuits using round-robin scheduling. So, for
the [sd| packet process, we model each link 77 either as an M/M/1 (Figure 5.7) or
as a Processor Sharing queue (Figure 5.8), with packet arrival rate r[,q)(t) * Vijia)(t)
and mean service time 1/y;;(t). Note, that for the Processor Sharing discipline, the
packet service requirement may be generally distributed and packets from different
classes of virtual circuits may have different mean service requirements.

Let N;jiaq)(t) > 0 be the expected number of [sd] packets at link 77 at time ¢ and
N;i(t) = [...Nijisa)(t)...]T be the vector of the expected number of packets on link
17 for all source-destination processes. Let p;j,q(N;;(¢)) be the probability that
there is an [sd| packet at link ¢ (either in queue or in transmission) at time ¢ (call
this probability: "instantaneous utilization for link i for the [sd] traffic”), such

that the |sd] packet departure rate from link 17 at time ¢ is p;;(t) * pijfsa)( N3 (£)).
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Figure 5.6: Two virtual circuits and their packets.
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Figure 5.7: M /M/1 model for packet process.
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Figure 5.8: Processor Sharing model for packet process.
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Then the expected number of [sd] packets at link ij at time t. N,j,a(t),
increases during At by the expected number of [sd, packets that arrive during this
period, [, (t) %V, ,q(t)*At, minus the expected number of [sd| packets that depart
during this period, p;;(t) * pijisd)(Ni;(t)). Since, the link utilization p;;,q)(IN;;(t)),
is a nonlinear function of the number of packets at link ij, N;;(t), the [sd]| packet

process at link 27 1s described by a nonlinear dynamic model

Nijts)(t+A8) = Nijtoa)(£)+r1ediie)* Vijrea(£) % At —pei;(8)=psjtea) (E)(N;(£))x At V5, [sd]

The expected number of [sd| packets at link ¢j at time ¢, N;j,q(t), is a contin-

uous function of time. So, let us define

- Nijisq)(t + At) = Nijpeq) ()
Nipa(t) = fim, At
then the [sd] packet process-at link 77 at time ¢ is described by

Yij VY [sd]

Nijiod)(t) = g () * Vigraa)(£) = pi; () * pijiea( N () Vi V¥ [sd]
The state of the network is described by the expected number of virtual circuits
Vijlsa)(t) and of packets N;ji4q)(t) for each link ¢7 for each [sd| traffic. So, we define

the network state as

Ii;[sﬂ'](t)

X(t) =
Nij[sd]{t)

The control variables are the congestion control parameters ¢,,q4(t) and the
routing fractions @,[,q)(t) for each path n[sd], for each [sd] traffic. So, let define

the control vector for the whole network as

‘i}m:;!d] { L )

Grlsd)(t)
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In order to write the dynamic evolution of the network state in vector form, we

define the following auxiliary functions

fl’.z'jiad]{t) — T Tsd](t)‘l * mﬂ[ad]{t) % ]'?I_J:Eﬂ'[.!dl](f) '_' 5:3d](f} w I:;[,d}{t) v 3.-].-_. lSd]

H’

| sd]

Inijisd)(t) = 7ra(t) * Vijia(t) — pii(t) * pijrea)(Ny;(2)) v ij, [sd]

= =

Ivijsa)(t)

f(¢, X(t),U(t)) =
( Iniilsaq(t)

L) ¥ -
— =

Then the network dynamics are described by the following nonlinear differential

equation
X(t) = f(t,X(¢t), U(t))

Finally, note that the ¢,;,4) and @,(,q's represent the fraction of incoming flow
to node s that is rejected or routed through path w[sd]. These fractions may be
realized either with a probabilistic implementation or with a deterministic imple-
mentation, for example round-robin or thresholding. We discuss this further in
section 1.2.

In this section, we have introduced a dynamic nonlinear queueing model for
multi-class multi-destination virtual circuit networks. In the next section, we will
use this nonlinear dynamic model to formulate and solve the combined routing
and congestion control problem for dynamic virtual circuit networks as an optimal

control problem.

5.6.3 Optimal Control Formulation

In this section, we formulate the joint routing and congestion control problem
for multi-destination multi-class dynamic virtual circuit networks as an optimal

control problem.
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First, we define a multi-objective function f(¢.X(#),U(¢)) for the integrated
problem. We would like to minimize the cost of rejecting virtual circuits from the
network, of setting up and maintaining the virtual circuits inside the network. as
well as of packet delay, while maximize the profit from servicing packets during a
time interval to,t7]. To accomplish this, we define the following nonnegative costs

and profits:

C'yofsq)(t)  : cost of not admitting a new [sd] virtual circuit
into the network at time ¢.

C'vijisd)(t) : cost per [sd] virtual circuit for link 77 at time ¢,
for example the cost of setting up and maintaining
the virtual circuit path through link ¢7.

C'n.ijisa(t) : cost per [sd| packet at link ¢7 at time ¢.

C'uijlsa)(t) : profit from servicing an [sd| packet at link 17 at time t.

So, given an 1initial time ¢ty and a final time ¢, we define as our multi-objective

function the following time-dependent function of the state X(¢) and the controls
U(t):

g(t,X(t),U(t)) = Z Colsd)(t) * V[sa)(t) * Dofsq)(t) +
[+d]

+ 2 2 Cviitsa)(t) = Vi (t) +

‘sd] 1)

+ Z Z CN,ij[,d}(f) *-Nijiadl[t) o

lad] 17

= 22 Cuiitaal(t) * £45(8) * pijiaa)(Ni;(2))
[sd] 13
The first term of the objective function is the average loss of not admitting
new virtual circuits into the network at every source node s for every [sd| traffic.

The second term is the average cost of setting up and maintaining Viitsa)(t) virtual

circults on every link i3 for every [sd| traffic. The third term is the average cost
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of p&fkft dE’Iﬁ.}’ at every link i'.,j'l for every qd trafhc. Fiﬂ&.“}'-. the last term is the
pfﬂﬁt from EE‘I?iEng a1l |5d! pﬂ(‘kE’T Ol eVery link '5.?

Next, we define the set for the controls as

V = {Bopeaq)(t)s Grieal(t) ¥ wlsd] V [sd], such that forall [sd]

Bojud)(t) 2 0, Ouppa)(t) 20 ¥ wlsd], Sofua)(t) + D bapua)(t) =1}
m[sd]

Nonnegative constraints on the network state Vj;,q(f) > 0 and N;jq(t) = 0
are always satisfied due to the structure of f(t. X(¢),U(t)).

Define also Py ;.4 (t) to be the costate variable for Vj,q)(¢), the expected num-
ber of [sd] virtual circuits on link :7, and Py ijisa)(t) to be the costate variable for
Nijig(t), the expected number of [sd| packets on link :7. Then the costate variable
vector for all links 77 for all [sd] processes is P(¢) = [... Pyijisq)(t) Pnijisa)(t) - J7.

Then our Dynamic Virtual Circuit Routing and Congestion Control problem

(DVCRCC) is:

Problem DVCRC(C"

minimaize / fg(t,X(f},U(t)]dt

Lo

with respect to U(t)

such that X(¢t) = (¢, X(¢),U(t))
X(to) = Xo
X(tg) free
U(t) eV

where
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to fixed initial time,

g fixed final time,
X(t) network state,

U(t) controls,
g(t,X(t),U(t)) objective function,
f(¢,X(t),U(t)) state dynamics,

A% control set,

X(tg) = Xo initial network state,
X(ty) final network state,

The Hamiltonian function of the state X(£), the controls U(t) and the costate

variables P(t) at time ¢ is
H(t,X(¢),U(¢),P(t)) = g(t,X(1),U(t)) + P(¢) = £(¢, X(¢), U(t), P(t))

Note that the objective function ¢ in the Hamiltonian has a multiplier equal to
1, since we have free final state conditions.

Necessary conditions for optimality are provided by Pontryagin’s maximum
principle [?9, 33, 58, 162, 502}.

Theorem 1. Necessary conditions

Let U*(t) be a piecewise continuous control defined on [tg,ts] which solves Prob-
lem DVCRCC and let X*(t) be the associated optimal path. Then there ezists a
continuous and precewtse continuously differentiable vector function
P(t) = [...Pyijsa)(t) Pnijisa)(t)...]T such that the following conditions are satisfied
for all t € [to,ty],

(>0 onlyif Colsal(t) = min{C,(,q), IIIJH{Z Py itsa)(t) * lijepisa)(t)}}

Dofad) (t) § e
=0 ow. V |sd

b

>0 only z'fz Py iitedi(t) % Liientsa)(t) =
qb;[ad](“ ﬁ = 11‘1111{0 sd H”n{z Pth[adj * ]-tJEp[ard}( )}}

=0 o.w. Vwlsd] V[sd

%
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Vaat) = 2 a(t) = 0ha(t) = Lijentsat(t) — E1aa)(2) = Via(t) ¥ i3, [sd

ij[sd] £
| ad]
Niwa(t) = rraag(t) = Vg () — () = pajtea)(NF;(2)) V45, [sd]
'Zj{sd]{tn) = Va0 V17, [sd]
Niglte) = Nipago Y id, lsd]
p‘i’,ij[xd](t] :_{ CI",ij[sd]( ) Py z;rad]"i ) * 53&]( )+PN1,} sd{t)*r[sd]{t] }

vij Y [sd]

. dp;ifs,d, (N (ﬂ)
Pﬁ-r,ij[sd]{t:] B —-{ Cp.,{g_;.‘[,.ﬁ Z C;_.[ U[nﬂrl * .F-":U(t) igh j d](t B
:j[a

(31d]

dﬁt‘juld] (Nf-( J)
dNU .sr.f( )

— D Prisanar)(t) * pij(t) * b oYY [sd)

Slﬂllj

P‘L’,ij[a:i][:tf) =0 Vi V [Sd]
Pﬂ',ij[sd]{tf} = {J v 1_} v [Sd]

Proof: The Hamiltonian must satisfy the following condition
H(t,X*(t),U"(¢),P(t)) < H(t,X*(¢),U,P(t)) VvV UeV
which 1s equivalent to the following condition

Z { Visd) () * [Cofsa)(t) * @orsd)(t Z Z Py iilsd)(£) * @oi,a(l) * Lijensa)()] } =

lad] wiad] 1]

< Z{ Yisd)(t) * [Cofoa) (£) * Bofaa(t) + D D Priijtsa)(t) * Snpoa)(t) * Lijentsa (t)] }

|4d] _ wlad] 1J
V' @ofsd)y Pxjsq) €V ¥V wlsd] V [sd]

Since, there 1s no dependency among the controls for different source-destination

pairs [sd], we can demmpmsed the above conditions V¥ [sd] to

Yisd)(8) * [Copsa)(t) * D21t (8) + D D Prajed)(t) * 0Fj10a1 () * Lijenpsa)(t)] <

7| sd] 1]
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E F}rsd](t} * E(F,_e,[s,,f‘:.[t} 2. Qn[sd?{f} 3 Z E Plu’,d']{t} * m’r_ﬂsd](t] * ]-r_;E'rrusd{fJ
) wisd] 1]
¥ Pofsd]s Prisq) €V ¥V 7[sd]

Then the optimal controls satisfy the following conditions

- >0  only if Cuq(t) = 111'111{6'{,%_,,1](”-1;}3;]1{2 Py ;jisalt) * 1ijp[:d]{H}}
o|sd) t) s I' W

=0 o.w. V [sd]

-

>0 onlyif Z Py ;iisd)(t) * 1ijen(sq)(t) =
7

(ﬂ;[sd(f) 4 = mln{(,"{,l,d.{i)qmm{z PI-',iJ'é:sd](t) * ]-ijp[sd]{t}}}

=0 o.w. Vr[sd] V¥ |[sd]

\

The optimal state and control pair (X*(t), U*(f)) must also satisfy the state
dynamics

X*(t) = £(¢, X*(t), U*(t))

which can be rewritten as

z ’:’Jd](t} * (ﬁ:[,d](t) * ]-z'jE:rr[.!d](t) - 6[3&](‘{) * Ii;[ad](t) v 1}1 [Sd]
m|sd]

Ttea(t)

Niia(t) = ma(t) * Vi (t) = mii(t) * pistaa)(N3;(8)) ¥ ig, [sd]

The optimal state must also satisfy the initial state X*(ty) = X, therefore

nate) = Vijpae Vi, [sd]
‘h’lr:j[_gd](tﬂ) — i?ﬁh'rt'j{ad]:u HU# T:j. [Sd]

The costate variables must satisfy the following conditions
P(t) = —Vx H(t, X*(t),U*(t), P(t))

which can be rewritten as
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SH(t.X*(¢t). U (t).P(t))

Pion ilt) = =
Visisd(t) dViaai(t)
= —{ Cvijisd)(t) = Pyijlea)(t) = 8100 (t) + P ijiad)(t) * Trea)(t) }
- AH(t, X*(£).U*(2),P(t))
PN,iJ[sd}{t) - = Oy AT =
{jh‘tj[sd]u}
. dP:"aldl ':Nf (t))
= —~{ Cnijlsq)(t) — > Cuiilsan)(t) * pij(t) » Ja[if v = -
(nd] ¥i51sd]\ T)

dpijis, ) (INT;(E)) )
dN;j1sq)(t)

= D Prijinan(t) * pij(t) * ¥ ij, [sd
|

3y dy

Since we have no conditions on the final state X(¢s), the costate variables at

the final time must be zero, P(ts) = 0. Therefore
Pvijtsa(tf) =0 Y ij ¥ [sd]

PN}:'_;'

walts) =0 Vij V[sd] O

Sufficient conditions for optimality are provided by the convexity of the

Hamiltonian with respect to the state and the controls [320, 237, 439, 379].

Theorem 2. Sufficient conditions

Let (

X(t),U(t)) be an admissible pair in Problem DVCRCC. Assume that

pistsa(Nij(t)) 15 defined for Nij(t) 2> 0, s .concave monotonically increasing and
twice differentiable in N;;(t). If there exists a continuous and piecewrse
continuously differentiable vector function P(t) = [...Py.ij[a)(t) Pyij[ﬂd](t)...;in such
that the following conditions are satisfied for allt € [to, ts)

fi’o{ad] (t ) :

f

>0 only of Copq(t) = nlin{cu{sd](t]vﬁjé}{z Py iitaa)(t) * Lijeptaa)() 1}
i;

| =0 o.w. V [sd]
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g

>0  only 'ifz Pl'r.i_f[sd:;(t} o 1r'J'E-w[ad](f) ==
¥

"ﬂ'._fr{ad](t) 9 = Hl]Il{Cg.[,d] Iﬂlﬂ{z Pi—’:,}[ad](t] * ]-szp acﬂ{ }}}

| =0 o.w. Vrwsd] V|[sd

ffhijszari](t} Z "‘f[,,d] .ni]( ) * ].ua:ﬂ-[,d]{ } = 531:17( } * F;J[sd]{t} v Ej‘ IL‘Sd]
‘.'rusd.

Nipa)(t) = rg(t) * Via(t) — wii(t) = pistea)(Nij(t)) ¥ 24, [sd]

E_;j[sd]tf‘ﬂ} — T’i_}[adhﬂ v 1.? v Sd]

P?'Z;,-[,d](fa) = Nij[ad],ﬂ v *’:j v [Sd]

P‘L",ij[ad](t) — —{ CV,ﬁj[ad](t) - Pi—’.ij[ad](t) " 5[:&](t) "t PN,a'j[ad](f] * T[sd](ﬂ }

=

: dpf'ﬂdl (N?(tj}
Pﬁ"ijl[’di(t) — _{ Crf"‘ 17 -“f] Z CH 1.?[51&1 * .l“i.f(t) * : r J J -
(s1dq] dN ij[:d](t)

=

dpljlsldl][ N (
div:;[sd (t

B Z ‘PNJ'J[SlliL]( ) P'fu( ) } v Ij‘:. [‘-‘id]

(s1dy)
Py iitsa(t) =0  Vij V [sd]
Pyiisa(tf) =0 Vij ¥V [sd]
Pnijisa)(tg) =0 Vij YV [sd]

then (X(t), U(t)) is optimal.
Proof: The first part of the proof is similar to that of Theorem 1.

In addition, the control set V is a convex set and since —p;jj,q(N;;(t)) 1s a

convex (1.e. pijlsq](IN;j(t)) 1s concave) and differentiable function in N;;(t), our

objective function g(¢,X(t),U(t)), as well as each component of f(¢,X(¢), U(f))
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are differentiable and convex functions in the variables (X(t). U(t)) for t € [to.1y,.
Furthermore, if Py ji,q(t) = 0 v 17 7 sd|, then the Hamiltonian function
H(t,X(t),U(t),P(t)) is a convex function in (X(t).U(t)) for t € [tg.t7| (we need
nonnegativity of the costate variables only for those components of f{¢, X(t), U(?))
that are nonlinear in X(¢) [320, 237, 439, 379]).

If all the above conditions are satisfied, then (X(t), U(¢)) is optimal. O

Note that for an M /M /1 or Processor Sharing queue at steady state, p,;,q)(IN;;) =

Nifod] is defined for N;; > 0, is concave, monotonically increasing and
Bt Y Pijlads]

[81d]
twice differentiable in N;, with ''m p;;(N;;) = L.

N, —
So, after numerically solving a two-Point Boundary-Value Problem (TPBVP),

we have the optimal congestion control and routing decisions. Numerical methods
114, 79, 203, 254, 292, 415] for the solution of such problems involve either flooding
or iterative procedures. Flooding (or dynamic programming) procedures start from
a point that satisfies one boundary condition and generates a trajectory. This is
repeated many times until one of these trajectories satisfies the other condition
or an interpolation of these trajectories can give an acceptable solution. [teratfive
procedures use successive linearization. A nominal solution is chosen such that
to satisfy one or more of the following conditions: 1) state differential equations,
2) adjoint differential equations, 3) optimality conditions, 4) boundary conditions.
Then this nominal solution is modified by successive linearization such that the
remaining conditions are also satisfied. Three classes of iterative procedures may be
used: 1) neighboring extremal, 11) gradient, and 111) quasi-linearization procedures.

In this section, we are primarily interested in the optimal control formulation for
the finite horizon problem and the long-run stationary equilibrium solution. So, we
will not discuss further numerical techniques for the finite horizon optimal control
problem. In this section, we formulated the combined routing and congestion
control problem for multi-destination multi-class dynamic virtual circuit networks
as an optimal control problem. Then for specific network configuration and trafhc

characteristics, we can find the optimum congestion control and routing decisions
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by solving a TPBVP. We can decompose the above problem to many smaller
subproblems, one for every source-destination. However, numerical solution may
require long computational times for on line implementation. Therefore. in the
next section, we also derive state dependent routing and congestion controls for

the long-run stationary equilibrium that can be used for on-line implementation.

5.6.4 State Dependent Routing & Congestion Control

In this section, we consider a network with constant arrival rates and mean dura-
tions ot virtual circuits, as well as constant costs and profits (autonomous system),
and we find optimal state dependent virtual circuit routing and ccngestion controls
for the long-run stationary equilibrium. Our problem becomes

minimize Z Cofsd] * V(sd] * Pofsd) +
[sd]

A E Z GV,ij[sd] * L’;j[,d] +

|sd] 1J

+ Y Y Cwijiad) * Nijlea) —

lsd] 1J

— DY Cuiiisa] * i * Pissa)(Ni5)

[sd] 12
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with respect to the congestion controls Poisd] = 0 v [sd]

the routing fractions @ri,q = 0 ¥V wlsd] ¥ lsd|
such that 0= Z Vsd] * (p#;sri] % lijTl‘[.!d] = 5[.51:{] * I:jfdd Vg ¥ {Sd]
#lsd]
0 = rrea) * Vijlad) — Hij * Pijlsa)(Nij) Vg V [sd]
@olsd)s Prlsd) = 0 Y wsd] ¥ isd]
Golsd] T D _ Prlsa) = 1 Y [sd]
i sd]

The minimization of the Hamiltonian with respect to the congestion control

and routing fractions is equivalent to the following minimization problem

MInimize Z { Vsd] * [Cﬂ{,d] * c;‘}ﬂi,d] " Z Z P‘Lf’,:'j[:d] % ‘.:b'n'[sd] s 1:;Er[sd]]}

[sd] w[ad] 12

with respect Lo @oled]s Prlsd]s vV w(sd], |sd]
such that Pofsd] + Z Orlsd] = 1 Dofsd]s Prfsaq) =2 0 V wlsd] V [sd]
[sd]

where the costate variables Py ;j(,q for the expected number of virtual circuits
and the costate variables Py ;1,4 for the expected number of packets for each link

17, for each [sd]| pair will be found later.
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The above problem can be decomposed for each source-destination pair sd] to

the following problem

MINtmize V[sd] * [C',;.[,,{j % Sﬁ‘*p[,d] e Z Z PI-',a_;'[sd] * Dijlad] * li.r'E-"r-f-sd];i
wlsd] 1)

with respect to @), Pafpa) ¥ m[sd]

such that Dol sd] Y‘ Pxlsd] = 1, Dofsd] Prisd) = 0 ¥ m|sd]
| ad]
Define the minimum cost at source node s for the [sd| virtual circuit traffic to
be Py r,a) = min{Cofpas IIFJIL{Z Py.iiisd) * Lijeplsd) } }- Then the optimum congestion
plad :
controls are:

=0 o.w.

) { >0 onlyif C-'a{ad] = P;*.s{ad]

and the optimum routing fractions are:

i

>0 onlyif ) Pv.ijlsd) * Lijenfsd) = Py g
qb;[ad] ‘: J
= U O.W.

%,

Therefore, an [sd| virtual circuit is rejected at source node s only if the cost
of rejecting it is equal to the minimum cost at node ¢, i.e. Cofed] = V.slsd)s Also,
path 7[sd| will be used for the [sd] traffic only if its costate variable achieves the
minimum cost, i.e. Z Pyiited) * Lijenied) = P;I',;’d].

1]
When the congestion control and routing fractions achieve their optimum val-

ues, we have

C [sd] * ,d] oo Z Z -PVl_.'rlari] u[sd] * li.TE'.rr sd) Pl* s[ad]

1] mlsd]
The optimum congestion control and routing decisions depend on the values
of the costate variables Pyviiisq) V17 V [sd]. So, we have to calculate the costate

variables Py i, for each link ¢7 for each [sd] traffic.
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At steady state, the costate variables must satisfy Py ;0 =0 717, [sdl.

PT’,:'jiad] =0 = _{ FL SSIE Pl 1jlad] * 5!51 P""- Aisd] * Tlad] } == (J v 1-} "d‘l
Then

PV.:'_:'[.: d =

f't-:u[ad} " Tl ad]

5 5 w P;"I.".rj[.sd'] v 3.? v lSd]
"[ad] [sd]

Next, in order to calculate the costate variables Py ;1,4 for the expected number
of [sd| virtual circuits, we must first calculate the costate variables Py ijsq) for the
expected number of [sd] packets. At steady state, the costate variables must satisfy

P_ﬁ.,:fj[_,d] =} ¥ ij v [Sd

; dpr'fad](N?')
Prijied) =0 = —{ Cvijted) = D Clislords] * Mis * E"l‘fr'l'[ d| a
[s141] B

dpi'llﬂrl‘{N;) . , ;
— D PNijina) * Hij * ";[,NT S0 =0 Vi VY [sd]
(s1dy] 4Y1j{ad]

In order to find the costate variables Py ;;,q for the expected number of [sd]
packets on every link 17, we must solve a system of equations for all source-
destination processes that use this link:

dPijis1 a1 (N3;)

. 1]
Cn.i 17 sd] Z C#.u (s1dy] * Hif * A N -
ls1d1] +Vij[sd]

d 17(a;dy N: : ;
- Z .P.r"'-rz_‘,r 31 PJEJ ﬁ £ f ]( J) — U \?f [de
[sldl_ d'ﬁ‘l U["d]

Note that for an M/M/1 or Processor Sharing queueing model the expected

number of [sd] packets on link ij at steady state is

AT pt— I["d] [ ]
Nijtsd) = - \—f — v |sd)]
i pu[ﬂlﬂ-l]
(81d1]

Solving the above system of equations (for all [sd] traffic that use link 77), we

have the utilization of link ¢j for each [sd| process at steady state
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B Nijlsal
Fijlsd] = T N.
[Srffi

1j[s1d)]

Therefore we can rewrite the Py ;jj,q) costate variable system of equations for

each link 27, as

(—,N-fﬂﬁd] - Z C.h'uf.i"-iflﬂﬁ] ¥ Hij

(#1d]
L Z ‘N:f[a:-d?] T
[82d2 |#[sd] Z “Tiglsada]
* . : =
3 AT * 2
(1+ Z n"la..'r nd: L’?dzl?‘-‘{ﬂ? (1+ Z ivij[”d‘ﬂ
[-!1{1:1 [Jlffl] s
1+ [ ]Z[ Nﬁj[ﬂ?dz] N
sady |#[ad] 17(82d; ]
- Z Py ij[spdy) * Hiz * \ - - T = ()
Ik et = .
[31d1] (1+ Z 1.?[-!1le (s2d2]#[sd] {1+ Z Nij[sidl])
! (syd] [s1d]

V [sd]

The solution to the above system is

1+ 'Z‘l ‘Ni}[h-ilf
s d
Py ijisd) = — * |CnNijlsd] * (1 + Nu[sd])

Hi

T Z CNrii[ﬂd?] * *M‘-:“.l:[lzliz] - C.ﬂ.iiiﬂd] ¥ [Sd]
[32d2]#[sd]
In the previous section, we stated that it must hold Pnijsa) = 0. So, we must

have

Gnu jlsd]
tig

— Cluijlsa) 20V [sd]

1.e. the mean packet delay cost should be greater or equal to the profit from

servicing this packet.
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Note that for the special case of equal packet cost for the different 'sd| processes

that use link 17, C'y ;54,1 = C'Niy ¥ [s2d,]. the above solution simplifies to

C-”*’.u ikl o [T] \r?.}[ﬂl )j
d'_]d ) 2
P?‘r',z'j[.:d] = e =" C.u.ij{.!d] ks Sd]

fij

Substituting the Py j,q into Pyr;j,q, We have the cost to go from node s to

destination d through path 7|sd:

Cvsited] o Tlad) (s1d;]
Pyoajed = D { ;-U[m]"r fgiﬂj * e * {{'N-fﬂsd} * (1 + Nijraa))+
1) Em|sd] ad] 5] Hi; |

L
[s2d2|#|sd] i 3

5, Y Cr fitaads] ® Nstesas) | = Chiilsd } ¥ wlsd] Y [sd]

The following Theorems follow immediately:

Theorem 3. Congestion Control

For the long-run stationary equilibrium of the virtual circuit routing and con-
gestion control problem, at every source node s, for every destination node d, [sd
wirtual circuits are rejected at a node s only if the cost of rejecting them is less

than the minimum cost to go from node s to the destination d through any of the

paths 7|sd|

ﬂ{sd] > []' ﬂﬂfy lf
Cf 1 + Z t.i‘ 2,d
‘Voiilsd] Tlad] (3, d .
Cofod] < mi { o + . x]

* CN ij(sd] * (1 T ii"Hfti:l[s::l’]jl Z (,N 1ila2dz] * [h'-’fh N C-‘-‘r‘j[’d] } }
(32dz]#[sd] 3 i
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Theorem 4. Routing Rule

For the long-run stationary equilibrium of the wvirtual circuit routing and con-

gestion control problem, [sd] virtual circuits are routed through path 1

the minimum cost to reach the destination d through path

('EI:I:T[sd‘J 2 U Gﬂgy lf

w(sd] only if

m|sd| is the minimum

C 1 T Z IJ[M
N4 Wb ?:[’d] B radh) Cnislsd) * (1 + 4 I+
et | sl Gl pi ol (15 Vit
. Z ICﬁ"ﬂ"'ri'-ii'-lr-FE'dE] ‘hrj' s2d3] Cﬂs‘i[s'i] } =
a2d2 |#[ad] 4 .
C’ . 1 T Y\] U[*’ldl]
. ’F.i | ad , [.!l'i.i _Jld ru
= T8 Cﬂ[sd]ﬂ Z § {5rj[ 4 ) i L ¥ ) [ CN'ij["“i] (14 ETJtHdI}_}_
plsd] {j€plsd) Lad] [sd] Hij
+ Y. CONijiesds] * Nijfesds) | = Cuistsd } }
[s2d2}#]sd] 3 H

From the above analysis, we have derived that the length of each link 27 for an

'sd!| virtual circuit is

CN,ijlsa) * (1 + Nijpa)+

- =

1 F Z wiJ[Htiu
Lo OViiled] | Tled] [s1d;]
11lad| —
M Sy g His
T Z Ca‘“"rrf.?'[-!'zdi] * r;_rj[.gzdg]

[82d2]+#[sd]

- C‘,Lt.i_.'r'[ad]

The first term of the above length represents the cost Cyj,q for setting up

and maintaining an [sd| virtual circuit passing through link 77, times the average

virtual circuit duration 1/dp,q4.

The second term of the above length represents
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the average number of packets ry,4 /8,4 in this [sd] virtual circuit times the cost
C'w.ijisd) Per packet. Finally, the last term of the above link length represents the
profit (' i;[sq) from servicing an [sd| packet on link ¢J

Let us consider the special case where we have zero [sd| virtual circuit set up
and maintenance cost Cy;;,a1 = 0, zero profit (', ;;1,q) = 0 for servicing |sd| packets,
and unit delay costs C'yijis,d,) = 1, ¥ [s2d>] on link 77. Then the length of link i3

for an [sd| virtual circuit is

L+ 2 D))

e L¥)
] . Tl ad] " [s1d1]
riled] =
"—qfsdz fi;

That means, that when our only objective is to minimize the average packet
delay, then the link length 1s given by a quadratic function of the average number
of packets on this link.

In this section, we have derived state dependent routing and congestion controls
for multi-class multi- destination virtual circuit networks. In the next section, we

investigate a simple case of this state dependent routing algorithm via simulation.

5.6.5 Simulation

In this section, we investigate a simple case of the derived state dependent virtual
circuit routing algorithm via simulation. Simulation is a very effective model for
a detailed investigation of the routing algorithm. While the analytical models
provide a rigorous mathematical analysis of the system. they cannot afford too
much complexity. If we try to include all the parameters that affect the svstem,
then the analytical model become intractable. On the other hand, simulation
models are computer programs 289, 288, 149, 428, 316, 351, 408, 314| and therefore
we can program as much detail as we like. Their drawback is that they are time
consuming. We have to spend a lot of time for writing the code as well as for
running them. However, simulation is the only way (besides real implementation)
to measure the performance of dynamic routing algorithms.

We have implemented three deterministic source routing algorithms along the

minimum length path for single class virtual circuit networks (ties are broken
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arbitrarily - though we seldom have ties). The first algorithm uses as link length
a special case of that proposed in the previous section. The second algorithm uses
as link length the expected packet delay on this link. Finally, the third algorithm
is the optimal quasi-static routing algorithm.

1) Quadratic routing:

send a new virtual circuit along path .

_ 14+ N;;)° : 1+ N;)?

1f Z { ) * lijex = min Z | L x Lijep
] fij P ij Fi;

2) Shortest queue routing :

send a new virtual circuit along path =,
: 1 _I ."?\'T:" ; ]. _'I_ J'?\"T{'
it ¥ L % lijer = minyg > _ = # Lizep
i i Pl M

3) Optimal quasi-static routing

For updating the information at the source node about the link lengths in the

network, we considered three factors:

1) what estimate of the number of packets NV;; at each link 77 i1s sent to the
source node from each node 1.

2) how often this estimate is sent to the source node by each node 1. It is well

known that the updating period should be smaller than the average virtual circuit
duration [177, 518].

3) after how much delay this information arrives back to the source node. We

assume that no extra traffic is created from each node to the source node, but that
this information is either piggybacked on other packets or it is transferred through
a different channel.

First, we consider a single source-destination network with 2 paths from source
to destination (Figure 5.9) that have the same capacity but the order of their links
is different.

Path # has T links with transmission rates 5, 4, 3, 3, 2, 1 and 1. Path #2 has
7T links with transmission rates 1, 1, 2, 3, 3, 4 and 5.

The mean packet service time is — = 1 and therefore u;; = p = C;; = Cy;.
U

The mean virtual circuit duration is = = 1000. The total packet arrival rate i1s

6
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Figure 5.9: Simulated network.

417



v 1000

I 2 S however we considered 5 cases that achieve this total packet arrival
|
rate;
~ T
| % R =
L 5 5
| [ 1000
— 10
7 100 li
i i 1000 20
14 50 14

| 1000 | 100U
26 27 20 27

S i 20 1000
50 14 14
] | 1000
— i = 1B |
100 li 7

where < 1s the arrival rate of virtual circuits, r i1s the packet arrival rate per
virtual circuit, } 1s the average number of virtual circuits into the network and %
is the average number of packets per virtual circuit.

The information at the source node about the link lengths in the network is
updated according to two schemes:

a) instantaneous information, when at every instant, the source node knows

and uses the current number of packets at every link and

b) obsolete information, when the information about the average number of

packets at every link during a time interval of 100 time units is sent to the source
node at the end of this time interval and it is used by the source node after 50
time units delay.

Figures 5.10, 5.11, 5.12, 5.13, 5.14 and Table 5.1 describe the simulation results
of routing 100,000 virtual circuits into the network of Figure 5.9. In this network,

the two paths have similar links but in different positions. Both paths receive on
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the average the same number of the virtual circuits and have the same average

packet delay.

Although all the above five cases have the same total packet arrival rate, the
average packet delay is different in each case with an extremely large average packet
delay in case the last case (v = 1/100 r = 1/7), where each virtual circuit carries
a large number of packets. This means that routing algorithms that consider only
the packet arrival rate will achieve poor performance.

The more often that we update the link length information at the source node,
the smaller average packet delay 1s achieved. The smaller the delay that the link
length information becomes available to the source node, the smaller average packet
delay is achieved. When the network state information 1s obsolete, the Quadratic
routing seems to be shightly better than the Shortest queue routing, otherwise they
achieve the same average packet delay.

The Optimal static routing assigns in a Round-Robin basis an odd numbered
virtual circuit to path #1 and an even numbered virtual circuit to path #2.

When the updating period is not much larger than the mean interarrival time
of virtual circuits, then both dynamic routing algorithms, Quadratic routing and
Shortest queue routing, are clearly better than the Optimal static routing. However,
when the updating period is extremely large compared to the mean interarrival
time of virtual circuits, then the dynamic routing algorithms make many wrong
decisions and therefore give larger average packet delay.

The Shortest queue routing is an approximation of the Quadratic routing and
therefore they achieve similar average packet delay. Note also, that for single-link
paths with equal link transmission speeds, both algorithms choose the same path.
To see this, consider two single-link paths = and p, with link transmission speeds

w, N, packets at path = link and NV, packets at path p link, such that

(14—&%)2'::(1+f*v;,)2 142« N+ N2 1+2+N,+ N

- < =
" M w "
N, — N,)% (N, + N, + N, + 2 N,— N
ﬁv( p) * { P }c::[]@ P<c0e
$ p
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y=1+T w=1/100 instantaneous obsolete
quadratic 19.02 = 0.80 | 29.69 = 1.06
shortest queue 18.77 = 0.63 | 31.64 = 1.27
optimal quasi-static | 22.98 = 1.83
v=1/14 r=1/50 instantaneous obsolete

| quadratic 14.19 + 0.19 | 20.65 = 0.85
shortest queue 13.97 £ 0.48 | 20.39 = 0.78
optimal quasi-static | 17.98 = 0.62
v=1/26 r=1/27 instantaneous obsolete
quadratic 15.24 + 0.56 | 21.99 = 0.63
shortest queue 1543 + 0.28 | 21.75 = 0.58
optimal quasi-static | 20.41 + 0.57
v=1/50 r=1/14 instantaneous obsolete
quadratic 24.47 £ 0.99 | 34.88 = 1.47
shortest queue 23.38 = 0.85 | 34.65 £ 1.17
optimal quasi-static | 39.69 =+ 1.47
v=1/100 r=1/7 instantaneous obsolete
quadratic 53.88 + 2.64 | 71.35 £ 0.82
shortest queue a2k 3.67 | 72,94 12,26
optimal quasi-static | 99.36 + 5.89

Table 5.1: The average packet delay + error (95% confidence interval) for the
network of Figure 5.9 with v = 1/7, » = 1/100, for the Quadratic routing with
instantaneous and obsolete information, the Shortest queue routing with instanta-
neous and obsolete information and the Optimal guasi-static routing implemented

as Round-Robin.
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Figure 5.10: The average packet delay + error (957 confidence interval) for the
network of Figure 5.9 with v = 1/7, r = 1/100, for the Quadratic routing with
instantaneous and obsolete information, the Shortest queue routing with instanta-
neous and obsolete information and the Optimal quasi-static routing implemented

as Round-Robin.
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Figure 5.11: The average packet delay = error (95% confidence interval) for the
network of Figure 5.9 with v = 1/14, » = 1/50, for the Quadratic routing with
instantaneous and obsolete information, the Shortest queue routing with instanta-
neous and obsolete information and the Optimal quasi-static routing implemented

as Round-Robin.
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Figure 5.12: The average packet delay + error (95% confidence interval) for the
network of Figure 5.9 with v = 1/26, » = 1/27, for the Quadratic routing with
instantaneous and obsolete information, the Shortest queue routing with instanta-
neous and obsolete information and the Opfimal quasi-static routing implemented

as Round-Robin.
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Figure 5.13: The average packet delay + error (95% confidence interval) for the
network of Figure 5.9 with v = 1/50, » = 1/14, for the Quadratic routing with
instantaneous and obsolete information, the Shortest queue routing with instanta-
neous and obsolete information and the Optimal quasi-static routing implemented

as Round-Robin.
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Figure 5.14: The average packet delay + error (95% confidence interval) for the
network of Figure 5.9 with v = 1/100, » = 1/7, for the Quadratic routing with
instantaneous and obsolete information, the Shortest queue routing with instanta-
neous and obsolete information and the Optimal quasi-static routing implemented

as Round-Robin.
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That means that both algorithms choose path 7 since the ordering of the link

lengths 1s the same for both algorithms.

In order that the Quadratic routing achieves different average packet delay
than the Shortest queue routing, they should choose different paths for the same
network state. Consider two paths m and p with the number of packets on their

links satisfying the following relations simultaneously

(1+ N,;)? (1+ N,,)?
Z 4 * IIJETI' < Z lzyEp

1] JLL"LJ y
1+ .-"\'Tl. 1 + N
Z - ryEp < Z > % lijEw
zy Moy

then the Quadratic routing will choose path 7, while the Shortest queue routing
will choose path p.

Next, we further investigate the two dynamic algorithms for a more complex
network with unbalanced paths. We consider a network with 5 paths from source
to destination (Figure 5.15).

Path #1 has 3 links with transmission speeds 2, 1 and 3. Path #2 has 5 links
with transmission speeds 4, 2, 0.5, 3 and 1. Path #3 has 7 links with transmission
speeds 5, 1, 2, 3, 1, 4 and 2. Path #1 has 6 links with transmission speeds 1, 1, 1,
1,1 and 1. Path #1 has 4 links with transmission speeds 2, 2, 2 and 2.

S -
The mean packet service time is — = 1 and therefore y;; = u* C;; = C;;. The

H

mean virtual circuit duration i1s = = 1000. We consider two cases for the total

)

packet arrival rate.

In case #1 The arrival rate of virtual circuits is ¥+ = — and the packet arrival

1
5
rate per virtual circuit is 7 = 5 Then the average number of virtual circuits into

the network is ~ = 200 and the average number of packets per virtual circuit is

6
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Figure 5.15: Simulated network.
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In case #1 The arrival rate of virtual circuits is ¥ = — and the packet arrival

50
rate per virtual circuit is » = —. Then the average number of virtual circuits into
5
| . . b
the network is — = 20 and the average number of packets per virtual circuit is

L~ 200 L
g--—._; .

The information at the source node about the link lengths in the network is

updated according to four schemes:

a) 1 time unit, when at every instant, the source node knows and uses the

current number of packets at every link.

b) 20 time units, when the information about the average number of packets

at every link during a time interval of 20 time units is sent to the source node at
the end of this time interval and it is used by the source node after 20 time units
delay.

c) 50 time units, when the information about the average number of packets

at every link during a time interval of 50 time units is sent to the source node at
the end of this time interval and it is used by the source node after 50 time units
delay.

d) 100 time units, when the information about the average number of packets

at every link during a time interval of 100 time units is sent to the source node at
the end of this time interval and it is used by the source node after 50 time units
delay.

Figures 5.16, 5.17 and Table 5.2 describe the simulation results of routing
100,000 virtual circuits into the network of Figure 5.11. In this network, the paths
are capacity inequivalent and they also have different number of links. Every path
receives different number of virtual circuits and has different average packet delay.
Similarly as in the previous network, the more often that we update the link length
information at the source node, the smaller average packet delay is achieved. The
smaller the delay that the link length information becomes available to the source
node, the smaller average packet delay is achieved. However, the Quadratic rout-
ing achieves clearly smaller average packet delay than the Shortest queue routing,

especially when the network state information becomes obsolete.
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Figure 5.16: The average packet delay £ error (95% confidence interval) for the
network of Figure 5.11 for v = 1/5 » = 1/50, for the Quadratic and the Shortest

queue routing with updating every 1, 20, 50, 100 time units.
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Figure 5.17: The average packet delay & error (95% confidence interval) for the
network of Figure 5.11 for v = 1/50 r = 1/5, for the Quadratic and the Shortest

queue routing with updating every 1, 20, 50, 100 time units.

430



v=1/5 r=1/50 | time 00 time | 50 time 100 time

quadratic 14.06 = 0.27 | 18.74 = 0.30 | 30.55 + 0.54 | 50.70 = 0.87 |
shortest queue 14.65 = 0.25 | 19.531 = 0.30 | 33.38 + 0.42 | 54.13 & 1.32
A=1/o0 v=1/5 ] time 20 time 50 time 100 time
quadratic 38.98 = 1.70 | 51.70 = 1.84 | 77.53 = 1.30 | 106.89 + 1.61
shortest queue 39.59 = 1.10 | 53.74 £ 0.81 | 82.21 £2.08 | 110,02 % 2.62

Table 5.2: The average packet delay = error (957% confidence interval) for the
network of Figure 5.11 for the (Juadratic and the Shortest queue routing with
updating every 1, 20, 50, 100 time units.

Although for the above two cases, the total packet arrival rate i1s 4 packets
per time unit, they give different average delay. This again confirm our previous
observation that for virtual circuit networks 1s not enough to consider the aggregate
packet arrival rate, but both the virtual circuit and packet per virtual circuit
processes.

In this section, we present nonlinear dynamic queueing models of multi-desti-
nation multi-class virtual circuit networks, by explicitly considering the interaction
among the virtual circuit and packet processes. We formulate the integrated virtual
circuit routing and congestion control problem as an optimal control problem. We
set up a multi-objective function and we solve 1t using the Pontryagin maximum
principle. Then we derive state dependent routing and congestion control policies
for virtual circuit network control and we define as link length a quadratic function
of the average number of packets on it. Finally, we demonstrate via simulation,
that for an unbalanced network, this Quadratic routing achieves smaller average
packet delay than a Shortest queue routing. For a balanced network, both the
Quadratic routing and the Shortest queue routing achieve similar average packet
delay, that is also smaller than that achieved by the Optimal quasi-static routing,
when the updating period is not extremely larger than the mean interarrival time

of virtual circuits.
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5.7 Application to Integrated Services Networks

In this section, we apply the methodologies developed in the previous sections to
integrated services networks. In section 6, for each class, we model the trafhic
processes in two interacting levels: 1) the virtual circuit process level and 11) the
packet process level. For integrated services networks, we propose using more
than two interacting levels. For example, four levels: 1) subscriber level, 1i) virtual
circuit level, i11) burst level, 1v) packet level.

Different dynamic queueing models (such as those of section 5.4 for datagram
networks) will be used at each level to model the dynamic evolution of the corre-
sponding processes.

Furthermore, we can also introduce other dynamic models based on finite po-
pulation queueing models. For example, at the subscriber level, let A(t) be the
active number of subscribers among the existing S(¢), a(t) the rate at which an idle
subscriber becomes active and b(t) the rate at which an active subscriber becomes
idle. Then a dynamic queueing model that describes the average number of active
subscribers is the following:

A(t) = a(t) = (S(t) — A(t)) — b(t) » A(t)

Now, each active subscriber creates virtual circuits, and each virtual circuit
creates bursts, and each burst creates packets as in section 5.6. Therefore the
state of each system resource is described by three variables: the number of active
subscribers A(t), the number of virtual circuits V(¢), the number of bursts B(t)
and the number of packets N(¢) at this resource. So, for each class ¢, the state of

a Tesource 1s
Xe(t) = [A5(¢), VE(2), BE(t), N(¢)]

Similarly, for the cost functions, we add to the costs of section 5.6 another level

of costs for the active number of subscribers, bursts etc.
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Chapter 6

Stochastic Learning Automata for Decentralized

Load Sharing, Routing & Congestion Control

In this chapter, we introduce another novel methodology for decentralized dy-
namic load sharing, routing and congestion control. We propose stochastic learn-
ing automata at the source nodes of the system for admitting or rejecting jobs,
for selecting the destination node for job processing, and for selecting the routing
path to the destination node. These decisions will be done probabilistically by
learning automata algorithms that will update their action probabilities accord-
ing to measurements of the path and source-destination lengths. The path and
source-destination lengths are those derived in the dynamic optimality conditions
of chapter 4. We also introduce novel classes of stochastic learning automata:

1) state dependent learning automata, whose adaptation rates are functions of the
system state, i1) two-step learning automata, that use larger adaptation rates when
the selected action repeatedly gives good performance, ii1) multiple response au-
tomata, that use different adaptation rates for different system learning response
(not just the favorable/unfavorable response of previous learning automata). We
prove that these learning automata are feasible at each step, non-absorbing, strictly
distance diminishing, ergodic and expedient. We apply this methodology to data-
gram, virtual circuits and integrated services networks. We give an example, where
we make virtual circuit routing decisions learning automata algorithms. We show
(via simulation) that by suitable tuning the adaptation rates of the algorithms,

the learning automata achieve smaller average packet delay. We also show that
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a path length proposed in chapter 3, is superior to a shortest-queue-type routing,

usually used in real networks.

6.1 Introduction

Learning is defined as any relatively permanent change in behavior resulting from
past experience, and a learning system is characterized by its ability to improve
its behavior with time, in some sense tending towards an ultimate goal. In mathe-
matical psychology, learning systems [80, 135, 494, 259 have been developed to
explain behavior patterns among living organisms. These mathematical models i-
turn have lately been adapted to synthesize engineering systems [344].

Tsetlin [495] initially introduced the concept of learning automaton operatin.
in an unknown random environment. He considered learning behaviors of finite
deterministic automata under the stationary random environment. Varshavsku &
Vorontsova [503] introduced variable structure stochastic automata in an unknown
random environment. Chandrasekaran & Shen [92] Poznyak [386|, Tsypkin &
Poznyak [498], Flerov [163], Polyak [383, 384] Lakshmivarahan & Thathachar 283
and others further advanced the learning automaton theory.

A number of books on learning automaton theory have been also appeared.
Norman (355, 356, 357] develops a Markov process-based approach to analyze the
learning automaton and explain the learning processes in organisms. Lakshmi-
varahan [282] provides a rigorous analysis of the learning automaton theory. El-
Fattah [143] presents learning automata used for pattern recognition systems and
for simulation of collective behavior problems. Glorioso & Osorio [197] describe
fundamental issues of learning and applications in engineering. Baba [19] presents
learning automaton behavior under unknown multi-teacher environments. Naren-
dra & Thathachar [342] provide a rigorous introduction to the theory of learning
automata.

A number of papers have been also appeared recently {13, 281, 482, 367, 364,
363, 365, 451] that propose new reinforcement schemes for learning automata and

investigate their properties.
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Learning automata have been also applied to pattern recognition problems
22], to routing problems [346, 343, 456], to flow control problems [321. 322!, to
partitioning problems [366], to neural network models [24, 23, 473] etc.

In the previous two chapters, we found the conditions for team optimality.
Nash and Stackelberg equilibrium for the joint load sharing, routing and conges-
tion control problem. In this chapter, we introduce stochastic learning automata
as decentralized decision-makers that will achieve these conditions. A stochastic
learning automaton is an adaptive control algorithm that reacts to the system'’s
response. It chooses an action and if the system’s response is favorable, then it
reinforces that action, otherwise it tends to choose another action.

The greatest potential of the learning automata methodology 1s that it permits
the analysis of very complex dyvnamic systems, and global optimization is possible.
Even when little information is available, they tend to stabilize a nonstationary
system by predicting its behavior.

We propose using learning automata at the source nodes of the system for
admitting or rejecting a job from the system (congestion control), for selecting the
destination computer site for processing the job (load sharing) and selecting the
path through which the job will reach this destination node (routing).

In previous chapters, we found what the optimal load sharing, routing and
congestion control policies should be. These optimal control policies may be im-
plemented directly as they were found. However, the underlying assumptions of the
models (e.g. independent exponential distributions), or even other management
problems that were not explicitly considered, may affect these optimal control poli-
cies. Therefore, we propose the use of learning automata that will drive to these
optimal control policies. “o, instead of deterministically choosing the minumum
length path, learning automata will choose it with very high probability. Note, that
if we appropriatelly calibrate the step size of these learning automata algorithms,

then they may choose the minimum length path with probability 1.



6.2 Learning Automaton Theory

In this section, we review the basic learning automaton theory [344. 342].
A learning automaton is a feedback system (Figure 6.1) connecting a stochastic
automaton (X,¢,a,P,T,G) and an environment C = {Cy,..., (4} , where
X:1nput set or environment response.
1) if X € {0,1}, i.e. the environment response takes only two values,
where X = 0 can be considered as reward and X = 1 as penalty, we have
a P-model
i X e {X%...,X*}, X*e€]0,1], i.e. the environment response takes
a certain number of values in the interval [0,1], with X = 0 to be “full
reward” and X = 1 to be “full penalty”, we have a Q-model.
3)if X €0,1],i.e. the environment response takes any valuein the interval
0.1], with X = 0 to be “full reward” and X = 1 to be “full penalty”, we
have an S-model.

¢ ={P1y...,Ps}, 8 < o0 : set of internal states.

a = {a,... ylalf» la] < s : output or action set.

P(n) = [P(n),..., Pq(n)]T state probability vector, where P;(n) = Pla(n) = a,].

T: algorithm, updating or reinforcement scheme, that generates the action proba-

bility P(n + 1) = T[P(n),a(n), X(n)].

G: ¢ — a : output function.

ci(n) = E|X(n)/a{n) = a;] : expected penalty for action a;, which are unknown

and there is a unique minimumn.

In order to evaluate a learning automaton, some measures are defined [344/:

1) Expedience : if at a certain time instant n, the automaton selects action
a; with probability P;(n), then the average penalty received by the automaton
conditioned on P(n) is M(n) = E[X(n)/P(n)]. If no a priori information is
availlable and the actions are chosen at random then My, = (C; + ... + Ciy)/lal.
A learning automaton is called expedient if lim E[M(n)] < My and of course it

— 20
performs better than one that selects its actions randomly.
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Figure 6.1: Learning Automaton.
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2) Optimality : a learning automaton is called optimal if

lim E[M(n)] =¢, where ¢ =min{cy,....cla}

Tl —
or 1f

lim E[P(n)] =1, where Pi(n)= Pla(n) = q

n—od
1.e. optimality means that asymptotically the action associated with the minimum
expected penalty 1s chosen with probability one.

A learning automaton is called ¢-optimal if

lim E[M(n)| <c¢ +e¢ €>0

n—

Next, the operation of a learning automaton is described: The automaton
selects action a(n) = a; with probability F;(n) at each instant n. Action a(n)
becomes input to the environment (Figure 6.1). If this results in a favorable
outcome for the network performance (X'(n) — 0), then the probability P;(n) is
increased by AP;(n) = P(n + 1) — Py(n) and the P;(n),j # ¢, are decreased by
APFPj(n) = Pj(n + 1) — FPj(n). Otherwise, if an unfavorable outcome (X(n) — 1)
appears, then the F;(n) is decreased by AP(n) = Pi(n + 1) — Pi(n) and the
P;(n),7 # t are increased by AP;(n) = P;(n + 1) — Pj(n). By iteration of the
algorithm, we achieve adaptation to varying environment conditions.

Let a(n) = a; and
if X(n) — 0 then

P(n+1) = Pi(n) + 2 f;[P(n)
g3
Pi(n+1) = Pi(n) — f[P(n)] ,¥j # 1
else X(n) — 1 then

P(n+1)= — > g;[P(n)
WES

Pj(n + 1) = Pj(n) + g;(P(n)] ,Vj # 1

where f; and g¢; are nonnegative continuous functions and 0 < Pj(n) < 1

d
||

EPl-(n) = 1. f; and g; can be linear or nonlinear functions of P (n). A class of
121
linear algorithms is :
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f_,-{P(n}) =ax*Pj(n), 0<a <1, a:reward parameter

1
g;(P(n)) = 8 = [| T = PJ-[T?)] , 0< 3 <1, 3:penalty parameter
al —

Three linear schemes exhibit interesting behavior [344]. In the Lgp_; (Linear
Reward-Inaction ) algorithm (3 = 0), every sample path converges to selecting only
one action with probability one and it 1s e-optimal. For the Lr_p (Linear Reward
Penalty) algorithm (0 = a), and the Lg_.p (Linear Reward Infinitesimal Penalty)
algorithm (3 << a), P(n) converges in distribution to a random vector P, whose
distribution 1s independent of P(0). Further the Lgr_.p 1s ¢-optimal and not be
locked in on a nonoptimal action.

For the Lr_.p algorithm [343, 456] there is a unique P* such that C;(P*) =
C;(P*) ¥ 1,7,1.e. in the limit the expected penalties of the actions are equali-
zed and the action corresponding to the lowest expected penalty is chosen with

probability close to 1.
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6.3 State Dependent Learning Automata

In this section. we extend the learning automata theory by making the updating
scheme a function of the environment state.

At time n, action 7 is selected according to an action probability Fi(n) > 0,
Ele P.(n) = 1. We define as response X;(n) of the environment a continuous,

monotonous, non-decreasing function of the cost (';(n) of the selected action 1

normalized to the [0,1] interval, i.e.

Xi(n) = 9(Ci(n)) 0< X(n) <1

In this way, we correspond X;(n) — 0 to a favorable outcome (small (';,(n)), and

X;(n) — 1 to an unfavorable outcome (large C;(n)). Examples of such functions
are .
: Ci(n)
i) = G e

Ci(n) = Crin(n)
Cmazlin) = leﬂ(n’)

Adn) =

..’T‘:{ﬂ) - Eﬂ*[ﬂ;[n}—cmgg{ﬂ}}

The choice of the suitable function depends on our desire to stress some response
areas or to have uniform adaptation speed to the response.

[f the environment’s response X;(n) to the selected action ¢ is the minimum
among all alternative actions, then its action probability increases by AP;(n) and
the action probabilities of the other actions are decreased. Otherwise, its action
probability is decreased by AP;(n) and the action probabilities of the other actions

are increased.
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Then we propose the following State-Dependent (SD) algorithm:

Let aln) = a,
If Xi(n) = min{X }, then
d
P(n)=P{n—-1)+ax*[l - X(n Zf;

Pj(n) = Pij(n - 1) —ax[1 - X(n)] = f;[P(n)]
Vi # i

else

P(n)=Pi(n—-1)-8*X(n)* Y g;[P(
e

Pi(n) = Pi(n — 1) + 3 % X(n) x g;[P(n)]
Vi # i

where 0< a,8 < 1.
where f; and g¢; are nonnegative continuous functions and 0 < Pi(n) < 1,

ZP:'('H) = 1. f; and g; can be linear or nonlinear functions of P(n).
=1
If the reward and penalty functions are linear functions of the action probabi-

lities, then we have a State-Dependent Linear (SDL) algorithm.
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6.4 Two-Step Learning Automata

In this section, we propose a learning automaton that uses two action levels to

update its action probabilities. If the action that is chosen at step n is the best,

and was also the best at step n — 1, then we reward this action a lot by increasing

1ts probability with a large step size. If the action that is chosen at step n is the

best, but was not the best in the previous step, then we reward this action a little

by increasing i1ts probability with a small step size. Otherwise, if the action that

1s chosen at step n is not the best, and was also not the best at step n — 1, then

we penalize this action a lot by decreasing its probability with a large step size. If

the action that is chosen at step n is not the best, but was the best in the previous

step, then we penalize this action a little by decreasing its probability with a small

step size. The above concepts leads us to the following Two-Step algorithm:

Let a(n) = a;:
I'f Xi(n) = min{X;(n)}, then

of

else

Xi(n — 1) = min{X;(n — 1)}, then
]
P(n)=P(n—-1)+a' %[l - P(n— 1)

Pi(n)=Pi(n—1)—a' *Pj(n—-1) Vj#p

-
3
|

Pi(ﬂ,-— 1) —:{12 * :l - Pi(ﬂ—- 1)]

Pi(n) = Pj(n—1)—a** Pj(n—1) Vj #p
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else

f Xiln—1) =min{X,;(n — 1)}, then
j

P(n)=FP(n—-1)—3** P(n—1)

1

al — 1

Pi(n—1)+ 3% %

J

—Pn-1) V7 #p

e
3
|

1

“llal =1

— Pi(n—1)| V7 #p

where 0 < Qo < ., Iﬁg < .ﬁl < 1.
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6.5 Virtual Updating

Another way to update the action probabilities with less overhead, (but also less
accuracy) 1s to update less frequently, for example at times 7,. We consider two
cases according to if we observe or not the environment between the update in-

stants:

6.5.1 Observable State

We assume that action selection (based on the P;(ty)’s) 1s made at the update
points. Knowing that there are n;(7,) successes (favorable outcomes) and wu;(7,)
failures (unfavorable outcomes) during [7,, Th+1), then we must increase the action
probability of the selected action n;(7,) times and decrease 1t u;(7,) times. In a
similar way we must decrease and increase the action probabilities of the other
actions.

Since we do not want to keep track of the exact sequence of occurrence of failures
and successes, we assume such sequences. There are several ways to accomplish
this, for example :

1) Increase P; in n;(7,) updates, then decrease it in u;(7,) updates.

11) Let n;(7,) < u;(7,). Increase and decrease P; in n;(7,) updates, then de-
crease it in u;(7T,) — n;(7.) updates.

ii1) Let n;(r,) > wui(7.). Increase and decrease P; in u;(7,) updates, then
increase it in n;(7,) — u;(7,) updates.

1v) Decrease P; in u;(7,) updates, then increase it in n;(7,) updates.

v) Let n;(7.) < u;(7,). Decrease and increase P; in n;(7,) updates, then de-
crease it in u;(7n) — n;(7.) updates.

vi) Let n;(7,) > u;(7n). Decrease and increase F; in u;(7,) updates, then
increase it in n;(7,.) — u;(7,) updates.

We can solve these recurrence equations and have P;(1,.,) =Function ( Pi(T,),
n:(Tn), ui(mn)). Thus instead of updating P;(7.) at every action success or failure,

we update at the times 7,.
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A simpler idea is to weight the reward adaptation step size with the number of
successes and the penalty step size with the number of failures. So. instead of a.

We Call use

ﬂ'z'(Tﬂ)

ni{TnJ F H,‘(Tﬁj

¥ *

and instead of 3, we can use

6.5.2 Non Observable State

Another way to update the action probabilities multiple times is based on a single
measurement. If the system state does not change too rapidly, then we assume
that the same outcome would have been repeated if we were continually measuring
the system state, say [ times until the next real measurement. So, we update the
probabilities [ times assuming the last outcome still holds. Note that the updating
scheme i1s composed of recursive equations. This leads us to extend the previously
proposed updating scheme by using one network state measurement, but many
(for example [, in region k) iterations of the scheme in one actual computing step
(updating step from n-1 to n). For clarity we show the transformation of only one

network response region (the full detail is given in the appendix).

If Xi(n) < o(m(n)), then

Pin) =Pn—-1)*{l—a;x[1- X(”HH‘
+ay x [1 = X(n)]

Pi(n) =Pin-1)*x{l—-a1*x[1 - X(n)]} Vj#i

Since the measurements for X;(n) do not change between n — 1 and n, then
P;(n) did not not change according to the previous updating schemes, so call them

X; and P;. However, we shall update the action probabilities P; multiple times,
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say 1, based on the measurements ;. So, by solving these recursive equations.

we have the following equations

Pi(ly) = P;~ {l — (xq * [1 - };]}31__._
]

+a; x[1 — X] = Z {1-c1«[1-X{}

r=t)

Pi(l;) = Pjx{l—a;=[1-X]}' V¥j#i
and the updating scheme becomes

If Xin) < ¢@i1(m(n)), then

Pi(n) =Pjn-1)x{l—ayx[1-X(n)]}* Vj#i

We can use different [,k = 1,..., R and m,,k = 1, ..., P for different regions,

where [y > [, > ... 2 [g > 0, and m; 2 m, 2 ... 2 mp > 0, are positive integers.

6.5.3 Frequent Updating

In the previous section, we updated as little as possible in order to reduce the mea-
surement and computation overhead. However, the best results will be achieved
if we measure and update the action probabilities as often as possible. Then the
action algorithm will track the system state faster and the decisions will be better.
Of course this will introduce more overhead of transmitting, selecting, storing and

computing the state statistics.
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6.6 Multiple Response Learning Automata

In this section, we introduce Multiple Response (MR) learning automata algo-
rithms. The idea is to use different adaptation rates for different environment
responses (X (n)). If the environment response 1s far away from optimum, the
algorithm should converge faster, while if the environment response is near to op-
timum the algorithm should have smaller fluctuation. Whenever the environment
response is very good (X(n) — 0) (reward response 1), then the probability of
the selected action increases very fast (@ — 1). When the environment response
is almost good (reward response R), then the probability of the selected action
increases slowly (a — 0). Correspondingly, whenever the environment response
is very bad (X (n) — 1) (penalty response 1), then the probability of the selected
action decreases very fast (8 — 1). When the cost of the environment response
is almost bad (penalty response P), then the probability of the selected action

decreases slowly (8 — 0).

6.6.1 Q-MR Learning Automata

In this section, we introduce a Q-model MR learning automaton algorithm, for
which the environment’s response takes discrete values. So, if action a; was selected

at time n, the environment’s response 1s an element of the set

Bl XR XP L XD e
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Let a(n) = a,

reward response 1: X(n)=X}(X(n))
reward response 2: X(n) =X} (X(n))
reward response R: X(n)=XAX(n))
penalty response P: X (n) = X" (X(n))
penalty response P-1: X(n) = X"} X(n))

penalty response 1: Xi(n) = X} X(n))

where 0 < X} < X2 < . < XP <mi < XP < X7V < .. < X} <1 are

functions of X(n).

A possible sequence for these functions {X7(X(n))} could be a Fibonacci
sequence (normalized to the [0,m;(X(n)) interval). Also a possible sequence

for the functions { X?(X(n))} could be a Fibonacci sequence (normalized to the

(m(X(n)),1] interval).

[f the selected action a; results in good environment response (0 < X(n) <
m;(X(n))), then we reward this action, otherwise (m;(X(n)) < X(n) < 1), we
penalize it. The reward (penalty) parameters depend on how good (bad) the
environment response was. Therefore, for each of the above environment responses,
we use different reward rates a”",» = 1,..., R and penalty rates 37, p = 1, ..., P, with

1>at>a*>...>aft>0,and1 >8> 82> ...> 07 >0.
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The above concepts produce the (J-model Multiple Response (Q-MR ) algorithm:

Let a(n) = a;

If X(n) = X}(X(n)), then

- Pi(n)|  Vj#i

where g7 (.), h7(.) € (0,1) »=1,...,R p =1,..., P are nonnegative continuous

functions.
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Define P(n) = [P;(n), ..., Pq(n)]T : vector of action probabilities.
Define df = P/X(n) = X7(n)/a(n) = a;] € (0.1) the probability for reward

M

response 7, when action a; is selected, and ¢ = P[X(n) = X?(n)/a(n) = a,

(0,1) the probability for penalty response p, when action a; is selected, such that

R F
LRSI
r=1 p=1
1 |ﬂ:1 ) R P _
Define Mo = —3_ | 3 X[d; ~ > X7
F =y | = p=1

The average penalty received by the automaton conditioned on P(n) 1s

M(n) = E[X(n)/P(n)] =
lal
= Z EX(n)/P(n),a(n) = a;]Pi(n) =
=i
al [ R E )
= > | 2 X[d[+>_ X | P(n)=
- | | r=1 p=1 A
al [ R P |
lim E(M(n)]=>_ | 3 Xid]+ > XPc | lim E[Pi(n)]
1=1 | o= | p=1
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Next, we prove that at each iteration of the@-MR algorithm, the action pro-

babilities are always non-negative and sum to 1.

Lemma : feasibility
I'he )-model Multiple Response (Q-MR) algorithm preserves the feasibility of
the action probability space.

Proof:

Let at time n the action probabilities are feasible and action a; is selected. 1.e.

la|

0 < Pin {IZP Yi==d Eyid

let a(n) = a;:
If X(n) = X[ (X(n)), then

P(n+1)= gl(X(n))+ Pi(n)l—-gi(X(n))] >0
since 0 < g7l(X(n)) <1 and P;(n) = 0,

Piln+1) = Pj(n)[l —g{(X(n))] =20 V5 #1
since gl (X(n)) < 1 and P;(n) > 0,

Pn+1)= g/(X(n))+ P(n)[l —gl(X(n))] < gl(X(n))+[1-gl(X(n))] =1,
since P;(n) > 0,

Piln+1) = Pj(n)[1 - ¢/(X(n))] £ 1 -gi(X(n)) <1,
since Pj(n) > 0 and g x7;(X(n)) > 0,

a| |al lal
Y P(n+1) = Y P(n)+gl(X(n)[1-Pn)]— Y gi(X(n))Pj(n)
vt i=1 =154
la|
= Y Pi(n)=1.
=1
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i X B2 ATRY), thaw

!

Fi{n+1)= PF(n)l—-h{(X(n))] 20
since Pi(n) > 0 and h?(X(n)) < 1,

1
ja| -1

Pi(n+1)= hi(X(n)) + Pi(n)[1 = Ri(X(n))] 20,

since |a| > 1, 0 < h¥(X(n)) < 1 and Pj(n) > 0,

P(n+1)= Pi(n)1-hr(X(R))]<1-r(X(n)) <1,
since 0 < Py(n) <1 and 0 < AP (X (n)),

1

lal —
< R (X(n))
h7(X(n))

Pi(n+1)= R(X(n))

+ Pj(n)[L = h7(X(n))] <

[~ RE(X(n)] <
(n))[2 |— |ﬂ-1|] +la| =1 a0y,

since 0 < Pi(n) <1, 0 < h¥(X(n)) < 1 and |e| > 2,

<

la| la| la|
S P(n+1) = Y P(n) - R(X(n)P(n)+ 3 h-w:(nn[ : —Pj-(n)]

1=l 1= d=15%1 |{1| =2

Next, we prove that the Q-MR algorithm is not trapped in a specific action,
1.e. no action 1s selected with probability 1. This is a desirable property for the
problem that we consider, since the system conditions continuously change and
even if an action is the best for a long time interval, it may not be always so. So,

we like to give a chance to the other actions in case the have become better.
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Lemma : non-absorbing

The @-model Multiple Response (Q-MHK) algorithm 1s non-absorbing.
Proof:

Let a(n) = a;:

Since ilPi-{n) =1, not all P.(n)'s are equal to 0. Therefore, 2 ; such that
Pi(n) € {E]:.,ll]. Since the reward response r happens with nonzero reward proba-
bility 4% € (0,1),

Pi(n +1) = Pj(n) — g7 * Pj(n) < P;(n) with positive probability d7 > 0.

Therefore,

P(n+1) # P(n) with positive probability. O

For the special case of f7(.)=fx*af and g (.) =037, with0 <8 <1, 0<
of <1, 0< B <1, we have the Q-model Multiple Response Linear (Q-MRL)

algorithm:
Let a(n) = q;

If X(n) = X} X(n)), then

L

P!j(TiL - l) = Pi{‘ll} -+ Hﬂ:[l i _Pt{ﬂ”
P:(n+1) = P;(n) — 6! P;(n) Vg £

If X(n) = XA(X(n)), then

P{(ﬂ T 1) — Pi'(?‘l) + HCE;H[l = Pz(ﬂ)]
Pi(n+1) = Pj(n) — 8afPi(n) ¥ j#i
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I[f X(n)=XF(X(n)), then
P(n+1)= Pin)— 63 P(n)
1

lal — 1

Pi(n+1) = Pi(n) + 63 [ *Pj(”}] v #F

If X(n)=XYX(n)), then

1

Pi(n+1)= Pi(n)—603'Pi(n)
1

al — 1

Pi(n+1) = P;(n) + 63!

_Pj(”}} V)FEL

Next, we prove that at each step of the ()-MRL algorithm, we approach to the
optimum action.

Theorem : stricly distance diminishing

The @-model Multiple Kesponse Linear (Q-MRL) algorithm with af = a” V1

and 37 = 3 Vi 1s strictly distance diminishing.
Proof:
Let P(n) and Q(n) be two different trajectories of the action probabilities.
Let a(n) = a;:
If X(n)=X(X(n)), then

P(n+1)= P(n)+6a"[l — P(n)
P(n+1)= Pj(n)—68a"P;(n) Vj #1

Qi(n+1) = Qi(n) + 6a"[1 — Qi(n)]
Qi(n+1)=Qj(n)—8a"Qi(n) Vi #i
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Then

P(n+1)—Q(n+1)|| = Z;Pj(ﬂ +1) = Qi(n +1)2

=

= [[B(n) + 6o7[1 = P(n)] = Qil(n) = o’ [1 = Qi(n)][*+

la|

- Z | P;(n _E‘,‘;ICEFPJ'(H]—Qj(n)+ﬁﬂ’?‘@j(n”2

J=11%1

7 1/2

—

-~1/2
|a|

- Q;(n))? =

Il
P ——
l—l
i
g =t
Q2
T
U
—
e

=(1-6a")||P(n) — Q(n)|| < [|[P(n) — Q(n)||
since 0 < <1, 0<a” <1.
= X?(X(n)), then
P(n+1) = Pi(n) — 66PP(n)]
+1)= P;

(n) + aﬂﬂ{mll_l—&(n)] Vi # i

Qi(n +1) = Qi(n) — 687Q;(n)]

Riln+1)=Qj(n)+ Hﬁp[iﬂ]; T Qj(n) Vi #£1
Then |
[ |a 1/2
IP(n+1)- Q(n+1)| = Z[P (n+1) QJ(H+1}] =

i [Pi(n) ~ 66°Py(n) - Qi(n) + 657Qi(n)*+

lal

*E#[ (1) + 60 | —— = Py(n)]| - Qs(n) - 667 iall_l-@j(n)}]ﬂ

1/2
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= | (1-687)? T n) - Qi) | =
=(1-687)||P(n) - Q(n)|| < [[P(n) = Q(n)|

stneell €« < l, 0<a¥ < 1.0

Define also the Q-MRL,—s algorithm, when R = P and of = 3 k=1,...R,
and the Q-MRL,_.3 algorithm, when R = P and a¥ = ¢8* k=1,...,R.

Next, we evaluate the conditional expectation of P;(n + 1) given FP;(n):

E[P;(n+1)/P(n)] =

S (P(n

=1

Pi(ﬂ')” P;‘(Tl)d':_}_

-4

F
+E [Pltn} = HS?P:(TI) Pi(n}c’?+

1

p=1
R
+ T[ n) — 6} Pi(n)| Pj(n)dj+
J=1 J#H‘ 1
-+ Pi(n) + 93P [ — Py )” Pj(n]c? ==
=1 j#ip=1 a| -
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o I
Pi(n)+6P(n))_ |al[l = Pi(n)ld; — >_ ajPj(n)d}| +
r=L ] J=1j#1 |
P 1 1
+6>_ | 2 “f{ . —Pi(ﬂ-J] Pj(n)cf — BI[Pi(n)]c}| =
p=1 | 1=1,#: |ﬂ'.| =ik
R |al al
Pi(n)+ 6P Z a: Z P:(n)d: Z a’ Pi(n)d}| +
= J=1li#t J=1)#1 ]
P |a] 1
Yy | S ﬁp{ _ By )} (n) — BEP(n) | =
p=1 [J=1,#1 |{ll_]’
= P(n) + 8 P(n S‘ T n)(aldl — a}d})+
r=1 =174

+ﬁZ > ﬁp{ 1-P;-(n>] Pi(n)d} — B [P(n)]e]

L 1=13#

For the Q-MRL algorithm with of = a" Vi Vr and 87 = 87 Vi Vp, we have

R
E[P(n+1)/P(n)] = P(n)+ 6Pi(n))_a" Z Pi(n)(d; — d})+

1=17#¢
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For the Q-MRL,-3 algorithm with ol = 37 = a" Vi Yr. we have

E[Fi(n + 1)/ Pi(n)] = P(n)+

R al
. . ; 1 . ‘
P2 o | X |P(mIB(n)d] = df = &) + == Piln)e]| = [Pi(n)le]
h=1 _J:1J¢'¥ PRk T
For the two-action (|a| = 2) Q-MRL algorithm, we have
, R
EP(n+1)/P(n) = Pn)+606P(n)l— Pn Z (ajd] —
r=1
P =
+ 63 [B801 — Pu(n)2 — BE[Pi(n))2d]
p=1

For the two-action @-MRL algorithm with ] = a” ¢ = 1,2 ¥V r and 87 =
G2 1:1=1,2 V p, we have

E[Pi(n + 1)/ Pi(n)]

Pl{n}+9P1 [l-P1 er_‘l dr

+ 6387 [[1 - P(n)1PE - (A0S

p=1

For the two-action Q-MRL,—3 algorithm with af“ =3 =a* =1,2 k=
1,..., K, we have

E[Py(n+1)/Py(n)] = +9Z “[Pi(n)[1 - Py(n)](d* — d5)+

|1 = Pl(”}]zﬂg — [Pl(”)]gfﬂ
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If in addition r:ﬂi' -+ f::i’ = a’.é.' + f:éf k=1.....R. then the above relation becomes

E[Pi(n +1)/Pi(n)] = Pi(n)+
74

03 ot [ Py(n)(d — d§) = [Py(n)P(dk — df)-
k=1

~[Pi(n)]2ck + ¢§ — 2Pi(n)ck + [Pi(n))cs | =

R
= Pi(n)+ 8 o* [Pi(n)(df — d§ —2¢§) + ¢| =

k=1

R 1
= Pi(n) =6 o [Py(n)(ck + c) — cf| =
R
E[P(n+1)] = n)] — 83 o* | E[Pi(n))(ci +c5) — & |
= [1-— HZ (c* + ) E[Py(n)] — 6 i o ck =

R Tl
E[Pi(n)] = [1 — 8> oF(c + cg)] P (0)-

k=1

R T
1 — [1 — 0 a(cf + cg)]
k=1

B _ = HZ ok k
BZak(cf e cg)

k=1
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Finally, if

R
1 -8 a(cf+¢5)] <1
| k=1
then
R
S ate
lim E{P(n)] = 3 =
Z ak(c‘{f + c5)
k=1
R R
Thus if Z a“‘c‘; & Z a"cf, i.e. the penalty probability for action a, is smaller
k=1 k=1
than the action probability for action a;, then lim E[P;(n)] < lim E[P,(n)], i.e.

on the average action a, is chosen asymptotically with a higher probability than

action a;. The following Theorems follow:

Theorem : ergodic

The Q-MR algorithm is ergodic and P(n) converges in distribution to a random

variable P* independent of the initral probability P(0).

Theorem : ezpedient

The @-MRL,_s algorithm with A = B, o = 3, d¥ + & = d5 + %, is

expedient.
Proof:
1
R
k k
al [ R P I
lim E[M(n)] = SOXII+ ) XPE | == < M,
LA =1 | r=1 p=1 | al 1
. R
i=1 Z ok ok
k=1
]
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Rewritting the conditional expected difference of the probability F; from step

n to step n + 1, we have

R
E[P(n+1) = P(n)/P(n)=P] = 6 |} o[l - PlPd]-
r=1
P
~ 2 BB~
p=1

Define the follwing functions:

=
"
2
I

R la|
P> o > Pid; —d})

r=1l i=171#3

=
R
T
1
g i
&
] =
L
I
Py
o
iy
|
oD
=

=
T
I
=
-
i
_I_
-
i
o
=
e
i
-

=
™
||
=
X
=
5
=
=
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Then we can write the expectation of the conditional incremental action prob-

abilities as:

EP(n+1)—P(n)/P(n) = P] = fW(P)
E[P(n+1)=Pn)][P(n+1)=P(n)T/P(n) =P] = °W'(P)
E[|P(n+1)—=P(n)]" /P(n) = P] = "W"(P)

The above defined functions have also the following properties:

W(P) is twice continuously differentiable in §..

/

W (P) — W(P) x WI(P) is differentiable in 3,.
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Next, we evaluate the probability of action a,, when there are only two possible

actions (|a| = 2):
| Pi(n) + 8a*[l — Pi(n)] 1if a(n) = a; and reward response 1

Pi(n) + 8af[1 — Pi(n)] if a(n) = ay and reward response R

P,(n) — 688F P,(n) if a(n) = a; and penalty response P

Pi(n) — 68 Py(n) if a(n) = a; and penalty response 1
P1 (ﬂr -+ l) =

Pi(n) — 6o’ Py(n) if a(n) = a; and reward response 1

Pi(n) — EHRPI(H) if a(n) = a; and reward response R

P,(n) + 8BF[1 — Py(n)] if a(n) = ay and penalty response P

| Pi(n) + 881 — Py(n)] if a(n) = a; and penalty response 1

Then the previously defined functions become:

Wit(P) = Pliﬂ'(l—ﬂ)(ff{—ff;)

r=1

WE(R) = Y B7[(1- P)'d - (R)*d)

p=1
The following Theorem characterizes the zeros of the function W(P):

Theorem :
For the Q-MRL algorithm,
3 unique Q;[,Qz e (0, ) such that W¥(Q,) =0 and W(Q;) =0 and

:)QE}le—,whenZ "(di—d;) >0 and Zﬁp(cp c1) > 0 or

r—I p—“l
tz)Qz<Q1{—,whenZa d,) <0 and Zﬁp ) <0
p=1
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Proof:

"
[
Il
e
]
AR
Vi
L —]

o1 {2
wl(z) = —Zﬁp(c‘;—c{}
2 4.
P
wWEP(1) = Y BP(-4)<0
p=1
/
If Z_ﬁp(cg—cﬁ):ﬂj fhEﬂ HT:EP(QI):{] f@r le.lz..
=1
F
if Y BP(ch— &) >0, then Wi(Q2) =0 for Q=@ =3
p=1
P
If Y. 8°(E—-&)>0, then WP (Q1)=0 for Q>3
p=1
P
ifS BP(E — &) >0, thenWi(Q,)=0 for Q;=Q =1
p=1
P
If Y 8(E-&)=0, then WF(Q:)=0 for Qi <}
p=1
P
if S BP(E — ) >0, then Wi(Qy) =0 for Q,=Q; =1
p=1

Similarly for the other cases O
If in the algorithm, we replace 37 by €37, then W(P) and W¥ (P) get multi-
plied by € and €.

404



Define
Wi(e, P)

|
s
=
:!i‘
_i_
=
T
;.
L
AN
AN

W(l,P) = W(P)

Then the following Theorem follows:

Theorem :

For the Q-MRL algorithm 3 Q(€) € (0,1), such that W(e,Q(€)) = 0 and
1) Qe )}Og and Qe) — 1 asﬁ—ﬂ[}

when Za (d; —d3) >0 and ZJF ch—c) >0 or

p=1

u)Q()‘fiQf. and Q(€) -—-UEIEE-—*[}*
T.UhETEZE‘E (di —d3) <0 and ZJ‘“ - ) <0

r=1 p=1

Proof:
1)
W(e, P)

W(1,P) - (1 - a)WF(P

W(l,P) = W(P)

Then

W(e,Q;) = —(1— a)WP(Qy) > 0

Wiel)= 0

Therefore W(e,Q(e)) =0 Qe) > @,

If € > ¢, then W(e,Q(e)) = WFP(Q(e))(e —e) >0
i.e. ((€) increases as ¢ decreases.

W(0,1) = 0, thus 1 is the least upper bound on Q(e).

Similarly for case 1i). O
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6.6.2 S-MR Learning Automata

In this section, we introduce an S-model MR learning automaton algorithm, for

which the environment’s response takes continuous values:

Let a(n) = a;

reward response 1: 0< X(n)<XMX(n))

reward response 2: XHX(n)) < X(n) < X} (X(n))
reward response R: XY X(n)) < X(n) <mi(X(n))
penalty response P:  m;(X(n)) < X(n) < X771 X(n))

penalty response P-1: X7} X(n)) < X(n) < X %3(X(n))

1

penalty response 1: f}(k’(n}} < Xi(n) <1

where 0 < X! < X2 < ... < XEF <m; << X7V < ..< X} <1 are functions
of X(n).

A possible sequence for these functions {X](X(n))} could be a Fibonacci
sequence (normalized to the [0,m;(X(n)) interval). Also a possible sequence

for the functions {XP(X(n))} could be a Fibonacci sequence (normalized to the

(m;(X(n)), 1] interval).

[f the selected action a; results in good environment response (0 < X(n) <
m;(X(n))), then we reward this action, otherwise (m;(X(n)) < X(n) < 1), we
penalize it. The reward (penalty) parameters depend on how good (bad) the
environment response was. T herefore, for each of the above environment responses,
we use different reward rates a”,r = 1,..., R and penalty rates 37,p = 1, ..., P, with

1>a'>a?>...>af>0,and 1> 3" > 382> ...> 37 > 0.
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The above concepts produce the S-model Multiple Response (Q-MR) algorithm:
Let {I(ﬂ-} = a,

If 0< X(n) < X}X(n)), then
Pi(n + 1) = Pi(n) + g{(X(n))[1 = Pi(n)]
Pi(n+1) = Pj(n) — g~(X(n))Pj(n) V£
If XN X(n)) < X(n) < mi(X(n)), then
Pin+1) = Pi(n)+ ¢ (X(n))[1 - P(n)]

Pj(n+ 1) = P;(n) — ¢f(X(n))P;(n) Vj#d

If mi(X(n)) < X(n) < XY X(n)),then

P(n+1) = Pi(n) - hY(X(n))Pi(n)

Pi(n+1) = Pyn) + KE(X(n) [ —— = Po(m)| VY j#i
If XHX(n)) > X(n) < 1,then

Pi(n +1) = Pi(n) - h}(X(n))Pi(r)

Pi(n+1) = Bi(n) + h{(X(n) | =g = Py(m)| V) #i

where g7 (.), A7(.) € (0,1) »r=1,..,R p=1,..., P are nonnegative continuous

tunctions.
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We can also prove several properties of the 5-W K algorithm similar to those of
the -MR algorithm.

Lemma : feasibility

The S-model Multiple Response ((Q-MR) algorithm preserves the feasibility of
the action probability space.

Lemma : non-absorbing

The S-model Multiple Response (Q-MR) algorithm 1s non-absorbing.

Theorem : strictly distance diminishing

The S-model Multiple Response Linear (Q-MRL) algorithm with af = o Wi

and 37 = 3 Vi 1s strctly distance diminishing.

Theorem : ergodic

The S-MR algorithm 1s ergodic and P(n) converges in distribution to a random

variable P* independent of the initial probability P(0).

Theorem : erpedient
The S-MRL,._3z algorithm with A = B, o = 8%, d* + cff = d‘; + cg, 1S

expedient.

Theorem :
For the S-MRL algorithm 3 Q(¢) € (0,1), such that W(e,@Q(e)) = 0 and

IJQ[)TPQE and QE}—hlase—r[}
when Za (d] —d5) >0 and T‘ﬁ”(a‘; ) >0 or
=1 p=1

tzJQ()<Q2 and Q()—*U-‘-‘ISE—*{L
IUhEﬂZ[I (d] —d) < 0 and Zﬁpcg e ) <
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6.7 Application to Datagram Networks

In this section, we propose using stochastic learning automata for load sharing,
routing and congestion control decisions in datagram networks. Glorioso & Colon
195, 194], Srikantakumar [454, 453, 455| Chrystall, Mars & Narendra [104, 370
Nedzelnitsky & Narendra [349, 350/, Mason [321, 322] and Narendra & Wheeler
345] use learning automata in datagram routing and they update the routing
probabilities according to the delay experienced by a packet.

Learning automata have also been used for routing decisions in datagram net-
works with variable quality links [141]. When packets repeatedly fail transmission
through a link, due to high error rate of this link, then they are driven by learning
automata to use a different link. For a full description of learning automata-based
routing in such an unreliable network. we refer to our paper [141].

The methodology that we propose for learning automata-based load sharing,
routing and congestion control decisions for new arriving packets (in datagram
networks) is similar to that of the next section for new arriving virtual circuits (in

virtual circuit networks). So, we do not reiterate it here.

6.8 Application to Virtual Circuit Networks

In this section, we propose using stochastic learning automata for load sharing,
routing and congestion control decisions in wvirtual circuit networks. We have
introduced learning automata for virtual circuit routing [136], where the routing
probabilities are updated according to the unfinished work on the selected path (for
user optimum ), or the increase in the number of packets on a path (or the increase
in the portion of the overall network delay corresponding to this path) due to the
addition of a new virtual circuit on this path (for system optimum). We considered
three cases regarding the availability of trafic measurements: 1) measurements of
the number of virtual ciruits and packets on each path are known, 11) measurements
of the number of virtual ciruits on each path are known, 1i1) no measurements

of the network state are known, but the virtual circuit arrival rates are known.
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Perturbation analysis may also be used 1n order to estimate the derivatives of the
cost function.

Evervthing in this section is for each class ¢, but for easier exposition we do
not show the superscript of the class. At every source node [s.|, a load sharing
decision maker selects the destination node [.d] where a new virtual circuit will be
executed. Then a router selects the path mq through which the virtual circuit
will be transferred to the destination node [.d] or rejects the virtual circuit for
congestion control reasons. The length of a path is given by the Theorems of
chapters 4 and 5.

However, network conditions change very rapidly and the minimum length
path at a time instant may not be the same at the next time instant. Also, the
information about the network state 1s always obsolete and inacurrate. Therefore
the load sharing, routing and congestion control decisions should not overreact
and immediately send a new virtual circuit to the estimated minimum length
destination through the minimum length path, because oscillations may appear
[45]. The system management decisions should fast track the current network
state but without introducing instability.

The proposed adaptive routing algorithms are based on a “Probabilistic Selec-
tion of the Minimum Length Path” idea. Instead of using a definitive decision as
to where to send a newly arriving virtual circuit, we vary the load sharing, routing
and congestion control probabilities favoring the minimum length destination and
path. Finally, the lengths of the paths are equalized.

Every source node [s.] has a learning automaton for selecting a destination node
where a new arriving virtual circuit will be executed. These learning automata
operate asynchronously and base their decisions on the current system state. The
actions, a(n ), of each automaton are the selection of a particular destination node
.d] for processing the virtual circuit.

The automaton selects action a(n) = ar,q with probability Pg(n) at each
instant n. Action a(n) becomes input to the environment. If this results in a

favorable outcome for the network performance (X(n) — 0), then the probability

P,q(n) is increased by AP ,q(n) and the P, (n), ¥[sd' | # [sd], are decreased by
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Pqg(n) is decreased by AP, (n) and the Py, (n), 7[sd | # [sd] are increased by

13

AP, y(n). Otherwise, if an unfavorable outcome (X (n) — 1) appears, then the
) 1

ﬁp:sﬂ:r]l,kﬂ.:].
We propose the following adaptive algorithm at every source node [s.}, for the

load sharing decisions:
Probabilistic Selection of the Minimum Length Destination:
Suppose destination [.d] was selected at time n-1, with Pg(n — 1).
Compute the lengths to all destinations, [, (n) V[sd ]
Calculate X (n) = X (..., l;,;n(n), ...).
['pdate the load sharing probabilities P[ma](n] V[sd ].

Select the destination for the n*™ wirtual circuit probabilistically according to
&Jd‘](n')'

Similarly, for the routing and congestion control decisions, every source node |s.]|
has a learning automaton for every destination node [.d] that routes new arriving
virtual circuits at node [s.] and destined for node [.d|. These learning automata
operate asynchronously and base their decisions on the current network state. The
actions, a(n), of each automaton are to select some particular path w(sd| to the
destination node [.d].

The automaton selects action a(n) = an[sq) With probability Priq(n) at each
instant n. Action a(n) becomes input to the environment. If this results in a
favorable outcome for the network performance (X(n) — 0), then the probability
P.i.a(n) is increased by A Py(,q4(n) and the Ppq(n), Vplsd] # w[sd], are decreased
by APyj,q)(n). Otherwise, if an unfavorable outcome (X (n) — 1) appears, then the
P.sai(n) is decreased by A Pqi,q(n) and the P, ,q(n), Vp[sd] # w[sd] are increased
by APsq)(n).
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We propose the following adaptive algorithm at every source node [s.|. for
routing virtual circuits to a certain destination node [.d| or for rejecting them
when congestion exists into the network:

Probabilistic Selection of the Minimum Length Path:
Suppose path w(sd| was selected at time n-1, with Ppq(n — 1).
C'ompute all paths lengths, Ly,q(n) Vplsdlandl,qg(n).

Compute X(n) = X(..., q(n),...).

Update the routing probabilities Py q(n) Vp[sd], P.ja(n).

Select the path for the n'™ virtual circuit or reject it probabilistically according

to Ppi_ad](n)r Pﬂ[ad}(ﬂ )
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6.8.1 Simulation Comparison of Algorithms

In this section, we apply three learning automata algorithms to the routing problem
in virtual circuits networks and we compare their performance. All algorithms have
the same reward and penalty parameters for different actions and the parameter
# = 1. We consider as length of a path 7[sd] its average packet delay Tyi,a)(n).

The simplest information that someone can measure and transfer about the
network state is the packet delay through each path from source to destination.
A new arriving virtual circuit is routed from its source to its destination along
the path that promises the minimum packet delay. Instead of using a defnitive
decision as to where to send a newly arriving virtual circuit, we vary the path
routing probabilities favoring the minimum delay path.

The first algorithm is the Lg_.p learning automaton with reward parameter
a = 0.2 and penalty parameter 3 = 0.8. If the selected path has the minimum
packet delay at the next iteration, then we increase the probability of selecting it
again, otherwise we decrease it. More specifically:

Let path 7 sd] is selected at time n

I'f Trpsaf(n) = min  {Tp,a(n)}, then

plsd] €T}, 4
Prisai{n + 1) = Prpga(n) + 0.2 % [1 — Prigay(n)]
Pyai(n+ 1) = Pyeag(n) — 0.2 % Pyg(n) ¥ plsd] # [sd]

else
Pﬂ[:d](n' T 1} = P'.fr[.!d](n'} — 0.8 % Pﬂ[sd]{n]l
Pyjea)(n + 1) = Pyya(n) + 0.8 [L = Pyog(n)| ¥ plsd] # [sd
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The second algorithm is the M RLg_.p learning automaton with reward pa-
rameters @' = 0.8 (excellent choice), a® = 0.2 (good choice, but not excellent) and
penalty parameters 3° = 0.8 (bad choice). 3' = 1 (very bad choice). We consider
two response and penalty regions for the algorithm (P = R = 2) and the functions
that define these regions are linear functions with parameter 2. More specifically:

Let path 7[sd| is selected at time n

If Trisa)(n) £ min  {Tpp,a(n)/2}, then

- p[&d]En[,d]
P?r[ad](ﬂ + 1) = -P‘fr[.sr:ﬂ(n) + 0.8 % []_ el -Prr::ad](n'}]
Pp[sd]{n iR 1) = Fp[sd?(ﬂ) — 0.8 = Pp[:d](ﬂ') v p[SdJ :x""i ?T"Sdl

I[f min {Tpa(n)/2} < Teppa)(n) £ min {Tppq(n)},

plsdl€N|, g  pladlell],g)
Prisg)(n + 1) = Prpsg)(n) + 0.2 % [1 — Prpeqy(n)]
PP[ﬂdl(n +1) = Pp[,d}(ﬂ) — 0.2 = Pp[,d](n) V plsd] # w|sd]

If min {Thpg(n)} < Tpn) € min {25 Ty (n)},

p{ad]EH[,d; F'[-‘d]EH[nd]
Prisai(n + 1) = Pyisq)(n) — 0.8 * Prpyai(n)
Poagn+1) = Pp[,d](ﬂ-) + 0.8 % [1 - Ppg,d](n)} V plsd] # mlsd]

If min {2 * Tp[,d](ﬂ}} < T#[_,d](ﬂ,L

plsd]€Il], 4
Pﬂ[sd](n ‘e ]-j - P‘J‘T[dd](ﬂ'] — 1= Pﬂ*[ad](ﬂ*)
Poisa(m + 1) = Pypagg(n) + 1% |1 = Pypug(n)] 7 plsd] # 7[sd]
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Finally, the third algorithm 1s the SDLg_.p learning automaton with reward
parameter o = 0.2 and penalty parameter 3 = 0.8. The state dependent parameter
is an exponential function of the difference of the selected path average delay
and the maximum average delay of paths between this source-destination. More
specifically:

Let path w[sd] is selected at time n

If Thjsq)in) = min {Tp[,d][ﬂ]}} then

plsd| €M}, 4
.Trr[sd:i{ﬂ-} — Inax Tp[ad::
Prisaf(n + 1) = Prppa)(n) +0.2x (1 — ¢ Plad] ) % [1 — Prisa)(n)]
| Tr(saq)(n) — maxTp,a)
Pp[.sd]{ﬂ—l_l}: Pp_,d]{ﬂ}—[]z*(l-—ﬁ p|ad] }*Pp[ad](n)
V alul] o
else
Tar[ad](n} - H}H':":Tp[sdj
P?riad](ﬂ +1)= Pﬂ[ﬂd‘;(n} — 0.8 * (l — € plsd] ) o wiad](ﬂ')
_ Tw[sd](ﬂ) = Iﬂ[aj{Tp[sd}
Ppi;d](n-l'l}: Fplsd](n}-’_gg*(l_e e )* [I_Pp!ad]{n)]

v plsd] # 7lsd

[t is important to understand that the above values for the reward and penalty
parameters are not the optimum. Depending on the network topology, the number
of paths between source-destination pairs, the traffic characteristics, the informa-
tion about the network state, the updating time interval and other variables, we
should choose the best parameters by experimentation. Note that the traditionally
ased shortest path algorithm is a special case of the learning automata algorithm,
since by suitable tuning the parameters, we can select the minimum length path
with probability 1.

[n this section, we compare the performance of the three learning automata
algorithms (see previous section) via simulation. We consider a network with two
paths from source to destination. So, each learning automaton has two actions
la|| = 2 to choose. Path # 1 has seven links with service rates 1. Path # 2 has
seven links with service rates 1, 0.5, 2, 2, 2, 0.5 and 1 (Figure 6.2).
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Figure 6.2: Simulated network.
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The mean packet service requirement is 1/¢ = 1 and therefore y,;, = u = (', =
(";;. For the rest traffic characteristics, we considered two cases:

1) 30/2/40: the virtual circuit arrival rate is 4 = 1/30, the packet arrival rate
per virtual circuit is » = 1/2 and the mean virtual circuit duration is é = 40.

ii) 50/5/200: the virtual circuit arrival rate is ¥ = 1/50, the packet arrival rate
per virtual circuit is » = 1/5 and the mean virtual circuit duration is 6 = 200.

For measuring the path delay, we consider two cases:

1) 1: at every packet departure from the network through a path, the destina-
tion sends to the source the packet delay through the path of that last packet.

1) 50 : at every 50 packet departure from the network through a path, the
destination sends to the source the average packet delay through the path of these
50 last packets.

The source node keeps and updates the information about the delay of its paths
to the destination. The information about the delay of a path i1s updated every
time a packet arrives at the destination through this path. However, this updating
1s not done immediately, but we assume a feedback delay so that this information
becomes available to the source node. We assume that no extra traffic is created for
transferring this feedback information to the source node (it is either piggybacked
on regular packets or uses a different channel). We consider two cases:

1) instantaneous information, when the feedback delay is 7 time units. In this

case, we assume that the feedback information has higher priority over other pack-

ets and does not wait in queues.

i1) obsolete information, when the feedback delay is 60 time units. In this case,
we assume that the feedback information 1s piggybacked on regular packets and is
transferred back to the source node.

Updating the information of a path asynchronously at packet departure in-
stances has an undesirable characteristic. If a path becomes unattractive for rout-
ing packets through it, then we may not route any more packets through it.
However, our information about its length remains the same, although after some

time this path may become idle. We have overcome this problem by sending a



30/2/40 1 instant 1 ohsolete 50 instant 50 obsolete

deterministic | 50.59 £0.89 | 63.59 =1.28 | 55.38 =0.93 | 61.97 =1.36
| L automaton 50.27 +=1.15 1 61.29 =1.36 | 57.37 =0.88 | 61.44 =1.25
MRL automaton | 50.64 +=0.73 | 61.27 =1.63 | 61.15 +=0.92 | 64.04 =1.36
SDL automaton | 48.92 +0.51 | 62.52 £1.04 | 57.37 +£1.14 | 60.60 =1.46

50/5/200 1 instant 1 obsolete 50 instant | 50 obsolete
deterministic 46.79 +1.75 | 57.84 +£1.92 | 60.52 +£2.21 | 68.30 =2.23
[, automaton | 45.35 +1.45 | 54.85 +2.31 | 61.43 +1.76 | 65.43 =1.77
MRL automaton | 43.25 +1.45 | 56.45 +£2.13 | 62.05 +£3.16 | 65.67 £2.52
| SDL automaton | 46.22 +-1.36 | 57.45 +2.17 | 60.81 =1.79 | 67.24 +1.68

Table 6.1: The average packet delay =+ error (95% confidence interval) for the
network of Figure 6.2 for deterministic, Linear automaton, Multiple Response au-
tomaton and State Dependent automaton based routing.

probe packet through a path that has not been used for 100 time units and there-
fore updating our information about its delay.

In Figures 6.3-6.10 and Table 6.1, we show the simulation results for the average
packet delay for 10,000 virtual circuits.

Although the reward and penalty parameters of the learning automata were
not chosen to be the best possible, all four algorithms achieve similar performance.
However, the learning automata have more flexibility, since we can calibrate their
parameters depending on the particular system. Note, that the deterministic al-
gorithm is a special case of the learning automata, since we can choose their pa-
rameters, such that the minimum length path is chosen. The more frequent we
update the algorithms and the more recent state information we have, the better

the performance.
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Figure 6.3: The average packet delay =+ error (95% confidence interval) for the
network of Figure 6.2 with v = 1/30 for deterministic routing.
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Figure 6.4: The average packet delay + error (95% confidence interval) for the
network of Figure 6.2 with v = 1/30 for Linear learning automaton based routing.
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Figure 6.5: The average packet delay = error (95% confidence interval) for the
network of Figure 6.2 with v+ = 1/30 for Multiple Response learning automaton

based routing.
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Figure 6.6: The average packet delay £ error (95% confidence interval) for the
network of Figure 6.2 with v = 1/30 for State Dependent learning automaton

based routing.
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Figure 6.7: The average packet delay = error (95% confidence interval) for the

network of Figure 6.2 with v = 1/50 for deterministic routing.
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Figure 6.8: The average packet delay *x error (95% confidence interval) for the
network of Figure 6.2 with v = 1/50 for Linear learning automaton based routing.
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Figure 6.9: The average packet delay & error (95% confidence interval) for the
network of Figure 6.2 with v = 1/50 for Multiple Response learning automaton

based routing.
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Figure 6.10: The average packet delay + error (95% confidence interval) for the
network of Figure 6.2 with v = 1/50 for State Dependent learning automaton

based routing.
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6.8.2 Simulation Comparison of Performance Measures

In this section, we use the Lgr_.p algorithm. We compare a class of performance
measures, that we introduced 1n section 5.5.3.
We consider as link length [;;(n) a convex combination of its current length

gf?rffnt[n} and its future length fj}“m”(n}. We consider as current length Ef}”""’“"’(n) =

1+ Nij(n)
H Cri ]

, a linear function of the number of packets on link :7. We consider as

1+ Vi ;
future length [57"*™(n) = Cj(ﬂ), a linear function of the number of virtual
pC;
circuits on link 27. Then the length of link 27 is
Zijzes*l J{ﬂ}+(1—fj* J{ﬂ) 0<e<1
uCi; puCi;
A special case of this measure is the unfinished work [136]
LN 3
{Fij(n) _ 1+ ..'hnj(ﬂ-) i : g 1+ ‘Vaj(ﬂ*)
pCs; b pCi;

The length of a path w[sd] is
"'r'.rr[sci](n} = E Elj[ﬂ’) * ]-ijErr[ad](nJ
1]

Next, we investigate the effect of the parameter ¢ on the average packet delay.

The routing decisions are done by a Lr_.p algorithm with reward parameter
a = 0.2 and penalty parameter 3 = 0.8: If the selected path has the minimum
packet delay at the next iteration, then we increase the probability of selecting it
again, otherwise we decrease it.

Let path 7[sd] is selected at time n

If lyfs)(n) = min {Lysa)(n)}, then

plad]€ll;, 4
Prsa)(n + 1) = Prisa)(n) + 0.2 % [1 — Prpa)(n)]
Pyaa(n + 1) = Pplaa)(n) — 0.2 % Pyiyq)(n) vV plsd] # w[sd]

else
Pf[,d](ﬂ -+ 1) = Pﬂ[,d](ﬂ) — 0.8 % Pﬂ[ﬁd]{n)
Pﬂ[adj(n 1 ]-) = Pp[sd](n) + 0.8 % |_1 R Pp[ad](n)] v p[.ﬂdl # WE‘Sd]
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We consider the same network as that of the previous section The mean packet
service requirement is 1/4 = 1 and therefore y;; = = (C',, = (;;. The total packet
arrival rate is 7 = /8 = 4/5. Two cases that achieve this rate are the following:

1) 5/50/200: the virtual circuit arrival rate is ¥ = 1/5, the packet arrival rate
per virtual circuit is # = 1/50 and the mean virtual circuit duration is § = 200.

11) 50/5/200: the virtual circuit arrival rate is v = 1/50, the packet arrival rate
per virtual circuit is = 1/5 and the mean virtual circuit duration is § = 200.

For measuring the path length, we consider two cases:

1) 1 : the current number of packets at each link is sent to the source at every
packet departure from that link.

11) 50 : the average number of packets at each link during the last 50 time units
1s sent to the source at every 50th packet departure from that link.

The source node keeps and updates the information about the delay of its
paths to the destination. The information about the delay of a path is updated
every time a packet arrives at the destination through this path. However, this
updating i1s not done immediately, but we assume a feedback delay so that this
information becomes available to the source node. We assume that no extra traffic
1s created for th transferring this feedback information to the source node (it is
either piggybacked on regular packets or uses a different channel). We consider

LWO Ccases:

1) mstantaneous information, when the feedback delay is 7 time units. In this

case, we assume that the feedback information has higher priority over other pack-
ets and does not wait in queues.

11) obsolete information, when the feedback delay is 60 time units. In this case,

we assume that the feedback information is piggybacked on regular packets and is
transferred back to the source node.

In Figure 6.11, 6.12 and Table 6.2, we show the simulation results for the
average packet delay for 10,000 virtual circuits.

We notice that a proper value for the parameter ¢ should be experimentally
selected for best performance. Using only the number of virtual circuits on each

link (¢ = 0) as the link length is very inefficient (actually, for the case 5/50/200,
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5/n0/200 1 instant 1 obsolete | 50 instant 50 obsolete
e = 0.2 104.22 =4.50 | 102.20 =5.51 | 133.30 =5.98 | 129.71 =4.92
e =0.4 59.61 £3.31 | 59.97 £3.06 | 78.49 £2.75 | 73.94 =2.38
e = 0.6 46.98 =2.43 | 46.12 £1.79 | 60.88 =1.67 | 56.81 +=1.53
e = 0.8 39.77 £1.05 | 42.68 £1.25 | 64.12 +£2.05 | 77.94 £3.33
=il 37.19 £1.22 | 50.66 =2.06 | 104.38 +=4.36 | 126.66 =4.45
delay 55.97 =3.98 | 97.02 £8.79 | 106.41 £8.03 | 121.67 £8.15
50/5/200 | 1 instant 1 obsolete 50 instant 50 obsolete
6= 73.01 £3.89 | 69.24 £5.15 | 125.73 £13.88 | 100.86 £7.56
e= 032 36.70 =0.98 | 37.20 =0.83 | 5143 £1.66 | 51.50 £1.77
e = 0.4 34.39 =1.05 | 37.23 =1.42 | 64.44 £1.69 68.90 £1.71
e=01 34.85 £1.05 | 39.41 +1.10 | 76.96 +£1.50 85.60 +1.10
g8 35.29 £0.88 | 41.59 +1.11 | 83.39 £1.19 | 92.28 +2.13
gie=] 37.02 =1.02 | 44.15 +£0.99 | 86.26 £2.34 | 97.26 +3.46
delay 45.35 =1.45 | 54.85 +£2.31 | 61.43 £1.76 | 65.43 =1.77

Table 6.2: The average packet delay + error (95% confidence interval) for the

network of Figure 6.2 for different values of the parameter ¢, when we use as link
1+ f"rr:-j 1 + L!ij

+ (1 —€) *
ij ij

length [;; = € =

the average network delay becomes extremely high and we do not even show it).
Also, it 1s not always best to use only the number of packets on each link (¢ = 1)
as the link length.

For comparison, we also show the average network delay, when we use the path
delay as path length. It seems that using both the number of packets and virtual
circuits as path length is much better than using the path delay.

The more frequent we update the algorithms and the more recent state in-
formation we have, the better the performance. Note also, that although the
traffic characteristics 5/50/200 and 50/5/200 have the same packet arrival rate,
the overall average packet delay is different. Traffic 5/50/200 has higher average

packet delay than traffic 50/5/200, because the virtual circuits are arriving more
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Figure 6.11: The average packet delay for the network of Figure 6.2 with v =

1/5, r=1/50, &= 1/200, for different values of the parameter ¢, when we use
1 + f\rl'j 1+ I:J
as link length [;; = €% + (1 —¢€)x* ;

1] 1]
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Figure 6.12: The average packet delay for the network of Figure 6.2 with 7 =

1/50, »=1/5, & = 1/200, for different valies of the parameter ¢, when we use
1+ N 1+ Vi
+(1—¢€)x ]

17 1]

as link length [;; = € x
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frequently and therefore the network state changes more quickly. So. the state

information that we use in the routing decisions is out-of-date.

6.9 Application to Integrated Services Networks

In this section, we make load sharing, routing and congestion control decisions in
integrated services networks using stochastic learning automata.

The methology that we propose for learning automata-based load sharing, rout-
ing and congestion control decisions for new arriving virtual circuits (in connection-
oriented ISN’s) or new arriving packets (in connectionless-oriented ISN's) is similar
to that of the previous section. So, we do not reiterate it here.

The only difference will be that the cost functions for each class in ISN’s are
different than those in virtual circuit networks. Therefore, the information that
will be needed in order to calculate the lengths to destinations and the path lengths
will be different than that for virtual circuit networks. For example, one class may
use its blocking experience, while another class may use its packet delay to update

1ts routing probability.

492



Chapter 7

Conclusions & Suggestions for Future Research

7.1 Conclusions

The major contribution of this dissertation i1s the introduction of a unified game-
theoretic methodology for the multi-objective joint load sharing, routing and con-
gestion control problem in distributed systems. And the introduction of stochastic
learning automata algorithms for decentralized asynchronous computation of the
solution.

We develop a novel mathematical approach, based on game theory, for the
decentralized quasi-static and dynamic problem. After defining the joint problem,
we model the distributed system on the path flow space using queueing and state
space models. Then we develop three methodologies for both the quasi-static and
the dynamic cases of the problem: 1) Team optimization methodology, when the
classes of jobs cooperate for the socially optimum, 11) Nash game methodology,
when the classes of jobs compete among themselves and each class try to operate
optimally for its own jobs and 111) Stackelberg game methodology, when some classes
of jobs have more power than others, for example priority classes.

For each methodology, we formulate the problem as a Nonlinear Programming
or Optimal Control/Dynamic Programming, a Nonlinear Complementarity and a

Variational Inequality problem. We state conditions for existence/uniqueness of

the solution and derive the optimality conditions for the quasi-static problem using
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Karush-Kuhn-Tucker theorem, and for the dvnamic problem using Pontryagin's
maximuin principle.

We apply the proposed methodologies to Datagram, Virtual Circuit and In-
tegrated Services Networks and develop several new queueing models and perfor-
mance measures, for each network type. We explicitly solve several examples and
evaluate the svstem performance via simulation.

Finally, we introduce new classes of Stochastic Learning Automata algorithms
and propose decentralized dynamic load sharing, routing and congestion control
using Stochastic Learning Automata. Simulation i1s used to demonstrate improved
system performance.

A variety of resource sharing problems arising in distributed systems may e

formulated and solved using the proposed methodologies.

7.2 Suggestions for Future Research

Applications. We have presented several applications of the proposed methodolo-

gies and formulations that we have introduced in this dissertation. Obviously, we
have not covered all possible applications. Thus, there is a huge research area
to apply the proposed methodology. For example, by considering a specific net-
work type (e.g. deterministic arrival and service distributions in ATM networks,
threshold buffer management schemes, aging/deadline priorities, etc.), we may
have difterent cost functions. Then selecting the appropriate scenario (coopera-
tion, competition or hierarchy), we may formulate the problem as a team, Nash or
Stackelberg game. Then we may choose either to solve the problem as a Nonlinear
Programming, a Nonlinear Complementarity or a Variational Inequality Problem
using appropriate algorithms.

Algorithms. We have developed several different formulations of the joint prob-

lem and suggested the use of iterative algorithms that solve the specific formula-
tions. We have also introduced and tested via simulation one class of such decen-

tralized, asynchronous dynamic algorithms, called stochastic learning automata.
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Algorithms for solving cooperative or non-cooperative game problems are itera-
tive algorithms that use first and possibly second derivatives. According to the
iteration scheme. they can be classified as Gauss-Seidel, Successive Overrelaxation
and Jacobi iteration algorithms. Instead of reiterating the existing bibliography
on such algorithms, we rather refer to the original papers or books.

1) Nonlinear Programming algorithms: [152, 529, 339, 192, 30, 164, 165, 311,
387, 46/,

1) Optimal Control algorithms: [14, 292, 381, 415, 325, 131, 254, 412, 203, 440.
262, 301],

iii) Dynamic Programming algorithms: [220, 406, 45],

iv) Nash Games algorithms: [405, 429, 312, 175, 302, 110],

v) Stackelberg Games algorithms: [382, 54, 372, 371, 373, 442],

vi) Nonlinear Complementarity Problem algorithms: [113],

vii) Variational Inequalities algorithms: [198, 217].

Incentives. In this dissertation, we have assumed that the players either coop-
erate or compete for the resources. However, through the use of incentives, we can
alter the scenario of the game and force the players to follow specific strategies.

Stochastic Discrete-Time. In chapter 5, we solved the dynamic deterministic

optimal control problem, since we described the system state by the expected
values of the stochastic processes. A direction for future research, is the solution
of the stochastic problem either in continuous or discrete-time.

Hierarchical Games. In the Stackelberg game formulation, we considered two

hierarchical levels, where at the upper level 1s the most powerful (e.g. higher
priority ) class of jobs and at the lower level (e.g. lower priority) is the less powerful
class of jobs. One may extend these two levels to multiple hierarchical levels, where
at each level there will be multiple classes. Then at each level the classes will play
a Nash game, while classes among different levels will act as leaders and followers

(Stackelberg game).

State Constraints. In chapter 5, we have introduced several possible constraints

on the system state. However, we have not explicitly included them into the
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solution of the optimization problems. One may extend this research by explicitly

solving the dynamic problem with state constraints.

Information Structure. In solving the dynamic problem, we have assumed that

the current network state is known. One area for future research i1s to solve the

dynamic problem with delayed information about the network state.

State Qbservation Structure. In solving the dynamic problem, we have assumed

perfect information about the network state. Another area for future research is

to solve the dynamic problem with imperfect state observation.
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