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Abstract

In this dissertation, we introduce a unified game-theoretic methodology for
the multi-objective joint load sharing, routing and congestion control problem 1n
distributed systems. We further propose stochastic learning automata algorithms
for decentralized asynchronous dynamic computation of the solution.

First, we define and model the problem on the path flow space using queueing
and state space models. Then we develop three methodologies for both the quasi-
static and the dvnamic cases of the problem: i) Team optimization methodology.
when the classes of jobs cooperate for the socially optimum, ii) Nash game metho-
dology, when the classes of jobs compete among themselves and each class tries to
operate optimally for its own jobs and iii) Stackelberg game methodology, when
some classes of jobs have more power than others, for example priority classes.

For each methodology, we formulate the problem as a Nonlinear Programming,
an Optimal Control, a Dynamic Programming, a Nonlinear Complementarity and
a Variational Inequality problem. We state conditions for existence/uniqueness of
the solution. and derive the optimality conditions for the quasi-static problem using
the Karush-Kuhn-Tucker theorem, and for the dynamic problem using Pontryagin's
maximum principle.

We apply the proposed methodologies to Datagram, Virtual Circuit and In-
tegrated Services Networks and develop several new queueing models and perfor-
marnce measures, for each network type. We explicitly solve several examples and
evaluate the system performance via simulation.

Finally, we propose decentralized asynchronous dynamic load sharing, rout-
ing and congestion control using Stochastic Learning Automata. We introduce
new classes of Stochastic Learning Automata algorithms and use them as decision
makers in the distributed system. We explicitly illustrate their operation with
an example for dynamic virtual circuit routing and demonstrate via simulation

improved system performance.
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Chapter 1

Introduction

1.1 Problem Statement

Jobs arrive at the source node of a distributed system requiring processing and
communication (Figure 1.1). However, not all of the jobs are admitted into the
system, because this may cause saturation of some system resources. The problem
of controlling these external arriving jobs is the congestion control problem. The
processing of jobs can be done at the source nodes or at some other destination
nodes. The problem of selecting the node for processing a job is the load sharing
problem. After selecting the destination node for processing, the job should be
transferred there. Also, jobs arrive at the source nodes simply requiring transfer
to a specific destination node. A job that requires transfer to a destination node
may arrive there through one of several paths. The problem of selecting the best
path for transferring them to their destination is the routing problem. All these
externally arriving jobs are assigned to the distributed system resources in an
efficient way, such that some cost function is minimized. While previous research
have concentrate on each problem in isolation or at most at two problem combined,
its is important to analyze all problems simultaneously, since the decisions for each
problem affects that of another. In this dissertation, we analyze the joint load
sharing, routing and congestion control problem.

Load sharing, routing and congestion control algorithms can be classified ac-

cording to how dynamic the decisions are in : 1) static, 2) quasi-static, and



source destination

destination

source

source destination

Figure 1.1: A Distributed System.



3) dynamic or adaptive. In static algorithms. the decisions are independent of the
current system conditions. Static algorithms can be : a) fixed, when there 1s a
predetermined set of alternative actions; b) random, where the traffic 1s split ac-
cording to fixed fractions. In quasi-static algorithms, the decisions depend partially
on the current network conditions but some network parameters are assumed to be
stationary over time. In dynamic algorithms, the decisions depend on the current
network conditions (topology changes, traffic conditions). Since in reali-

ty, network conditions change over time the decisions in dynamic algorithms may
achieve better performance.

The dynamic problem in any distributed system is a difficult problem even
under Markovian assumptions. The resulting Markov Chain does not have product
form solution because the transition probabilities depend on the network state.
Also, since a dynamic algorithm should depend on the current network state we
must find the transient solution of the corresponding Markov Chain with time
dependent external arrival and service rates (recall the nasty expressions for the
transient analysis of a simple M/M/1 queue [477, 251, 255]). Finally, even if
we solve the corresponding Markov Chain and find state dependent controls that
depend on the current network state, it is impossible to know the current network
state at all network resources. The needed time for the network state observations
to be transferred from one network point to another is a random variable that
also depends on the network state and during this time the network state has
already changed. Furthermore, it is also difficult to obtain accurate estimates of
the instantaneous rates. So, the network state information 1s always obsolete and
inaccurate. Therefore attacking the stochastic problem directly would be difficult.

Also, in real network control implementations, the average rather than the
instantaneous measures of the network state are used due to the following reasons:
1) wide variability of the instantaneous network state values, 2) obsolete network
state information, due to transfer delay, 3) periodic implementation of the network
control, 4) communication overhead in transferring the instantaneous network state
information, and 5) computation overhead in calculation for an exact network

optimization.



Most previous research uses simulations and heuristic algorithms to solve the
dynamic problem. Another common approach is to devise an ad hoc strategy
and then evaluate its performance for different values of some parameters. In this
dissertation. we formulate the quasi-static problem as a nonlinear programming

problem and the dvnamic problem as an optimal control problem.

1.2 Methodology

1.2.1 Objective Criteria

The usual approach to distributed system design and control is the minimization
of a single cost function. Most previous research on each of the above problems
assume the optimization of a single objective function. In a few papers, multiple
objectives are considered and then the usual approach is to combine the objectives
as seen by the system administrator into a single function. Thus, it is assumed that
all customers in the system are treated similarly and they cooperate for the socially
optimum. such as optimizing the average customer performance. Furthermore.
previous research is primarily concentrated on systems with a single class of jobs.
In this dissertation (sections 4.1, 5.1), we formulate and optimize the performance
of multiple cooperative classes of jobs as a team optimization problem.

However, in a real distributed environment there is a diversity of customer
classes. each with possibly different objectives and different service and accounting
requirements. The different classes of customers compete for the limited common
resources of the distributed system in order to optimize their own objectives, ignor-
ing the inconvenience that they cause to the other customer classes. For example,
different telecommunication companies may share the same communication links
and one of them may want to maximize the throughput of its customers, another
may want to minimize its average customer delay and a third may want to mini-
mize the blocking probability of its customers. Another example is when different
users share a multiprocessor system and one group of users wants to maximize its
throughput, similarly another group of users wants to maximize its own through-

put, another group of users wants to minimize its average response time and finally
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another group of users wants to minimize the variance of its response time. [n this
dissertation (sections 4.2, 3.2). we formulate and optimize the performance of dif-
ferent non-cooperative classes as a Nash game. Nash games are frequently used in
optimization problems in economy [11, 361. 174, 16, 443, 445, 369, 336. 213..
Finally, 1t 1s quite common to require differentiated service among different
classes by assigning different priorities to different classes, for example interactive
jobs have higher priority than batch jobs. A high priority class may acquire most
of the resources that it needs. while a low priority class should wait for the high
priority class to complete service. Since the reason for having priorities is to give
preferential treatment to the high priority jobs, it is not meaningful to define a
single multi-objective function (e.g. a convex combination of the objective func-
tions of the different priority classes) for global optimization across all the priority
classes simultaneously. However. we can still optimize the behavior of jobs within
each priority class. Therefore a different approach should be taken for performance
optimization of multipriority systems. In this dissertation (sections 4.3, 5.3). we
formulate and optimize the performance of different priority classes as a
Stackelberg game. Also, 1t 15 desirable that the system adminmistrator has more
power than the system users and frequently he/she wants to impose 1ts decisions
on the users. This scenario can also be modeled in a leader-followers framework.
that 1s a Stackelberg game. So, the administrator (leader) directs the users (fol-

lowers) according to his/her objectives.

i
!

1.2.2 Decentralized Dynamic Control

In this section, we show how the load sharing, routing and congestion control
decisions can be implemented in a dynamic and decentralized fashion. First, we
can implement the dynamic controls according to two ways:

1) In probabilistic decisions, the acceptance of a job into the network, the
selection of the destination computer site for processing the job and the selection
of the routing path to this destination are done probabilistically. So, an action 1s

selected with very high probability if the cost of this action 1s less than the cost of
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all other possible actions. In chapter 6, we propose a methodology for probabilistic
decisions based on stochastic learning automata.

2) In determuinistic decisions. the acceptance of a job into the network. the
selection of the destination computer site for processing the job and the selection
of the routing path to this destination are done deterministically. One possible
rule is to achieve the optimum controls in a weighted round-robin fashion. Another
possible rule is to select an action if the cost of this action plus a threshold is less
than the cost of all other possible actions.

We also want the load sharing, routing and congestion control decisions to
be done in a decentralized fashion. There are two decentralized implementation
options:

1) In source decisions, each source node accepts an externally arriving job,
selects the destination computer site for processing the job and chooses the routing
path to this destination.

2) In node-by-node decisions, each node (source node and intermediate network
nodes) accepts a job (either externally arriving or transferred from another node),
selects the destination computer site for processing the job and chooses the routing
path to this destination.

Correspondingly to the source or sender-initiated decisions, we may have
destination or receiver-initiated decisions, where the destination node decides about
the jobs.

Although node-by-node congestion control provides complete decentralization.

1t may also waste a lot of network resources. If a job is rejected at an intermediate

node, then all the network resources used by this job are wasted.

Also, node-by-node load sharing provides complete decentralization, but it re-
quires more overhead, since we need to keep the information about all source-
destination pairs. In source load sharing, we only need to keep information about
all destinations from this source. An important advantage of source load sharing is
that the source defines the destinations where its traffic may be processed avoiding
(for example, for security reasons) some other nodes. In node-by-node load shar-

ing the source node has no control over the destination selection. Also, in source



load sharing it is trivial to guarantee no looping. In node-by-node load sharing.
there must exist coordination between the source node and an intermediate node
to avoid looping.

Similarly, node-by-node routing provides complete decentralization. but it re-
quires more overhead, since we need to keep the information about all paths be-
tween all sources to all destinations. In source routing, we only need to keep
information about all paths from this source node to all destinations. An im-
portant advantage of source routing is that the source defines the paths that its
traffic may follow avoiding (for example, for security reasons) some other nodes.
In node-by-node routing the source node has no control over the path that its
traffic may follow. Also, in source routing it is trivial to guarantee no looping. In
node-by-node routing, there must exist coordination between the source node and
an intermediate node to avoid looping.

Finally, in future high speed networks, the bottleneck will be on the com-
putation rather on the communication delays. Therefore, 1t 1s preferable that all
processing intensive functions to be transferred outside of the network to the edges.
Source-based protocols satisfy this requirement.

In this dissertation, we formulate the joint load sharing, routing and congestion
control problem on the path flow space, so that the decisions may be done at the

source nodes.

1.2.3 Stochastic Learning Automata

In the previous section, we stated that the dynamic controls may be implemented
in a probabilistic way using stochastic learning automata. These are adaptive
control algorithms for highly uncertain systems. They have their origin in the
area of mathematical psychology. They select probabilistically an action and then
update their action probabilities according to the outcome of the selected action.
[f the outcome 1s favorable, then the probability of the selected action increases,
otherwise it decreases.

[n this dissertation, we propose using stochastic learning automata as decen-

tralized dynamic decision makers at the source nodes. For each class of jobs, at



each source node there are i) an automaton for selecting the destination node for
processing, and 11) an automaton for each destination. that selects the routing path

to this destination or rejects new jobs.

1.3 Datagram Networks

Most previous research on the load sharing, routing and congestion control prob-
lems consider a datagram network. In datagram networks, each job is decomposed
in small groups of bits called packets [166, 171, 256, 45, 478, 432]. Each packet
1s treated as a separate entity independently from other packets belonging to the
same job. So, 1n datagram networks, packets independently acquire and release the
required bandwidth for their transmission. In this way, the network resources are

efficiently utilized. since packets can be distributed over underutilized resources.

1.4 Virtual Circuit Networks

Most existing networks (Codex, Euronet, SNA, Telenet, Transpac, Tymnet, etc.)
as well as proposals for future high speed network architectures employ virtual
circuit switching (45, 160, 186, 227, 432]. For each call (virtual circuit. or virtual
channel, or virtual connection, or virtual route, or session, or transaction, etc.). a
single path 1s set up from source to destination and all entities (bursts, packets.
cells, etc.) that belong to this call follow this path. Virtual circuit switching
provides the following advantages:

L) Flexible resource management, since packets of each connection are on a
specific path and not all over the network.

2) Easier and fairer access, service, accounting and billing control.

3) No packet resequencing at the destination (due to different delays of packets
that arrive at the destination through different network paths), since packets be-
longing to a specific virtual circuit follow a single path from source to destination

(hop-by-hop resequencing due to transmission errors may still needed).



4) Less packet header overhead, since the header carries only the virtual circuit
number in which the packet belongs. and not the source and destination addresses.

5) No packet looping, since packets follow an already established path.

6) Less routing update overhead, since the routing is done on a per virtual
circuit basis and not on a per packet basis.

7) Easier congestion and flow control for each connection by accepting a new
virtual circuit only if it will not congest the network and by controlling the packet

rate and resource usage of each admitted virtual circuit.

1.5 Integrated Services Networks

Traditionally. there were separate networks {circuit/packet switched) for carrying
different traffic types (voice/data). Integrated Services Networks (ISN's) have
been proposed as the future network architecture that will support multimedia
traffic (voice, data, video etc.) simultaneously 388, 389]. These multiple classes of
traffic will share the same network resources (buffers, switches, transmission lines,
etc.) for flexible and efficient resource sharing. However, each class has different
and conflicting performance requirements and objectives to those of other classes.
Hence new methodologies are needed for network design and control problems.
These networks will operate similarly to virtual circuit networks, where all packets

belonging to a specific virtual circuit follow the same route.

1.6 Outline of the Dissei‘tation

In this dissertation, we solve the joint problem of accepting new arriving jobs in a
distributed system (congestion control), of selecting the destination computer site
for processing these jobs (load sharing) and of selecting the path for transferring
the jobs to this destination (routing).

In chapter 2, we present a survey of historically important studies on each one
of these three problems. The only relevance of these studies to this dissertation

is that they consider either the load sharing, or the routing, or the congestion



control problem. In this dissertation, we develop a novel and unified methodology
for solving the joint problem both for the quasi-static and the dvnamic cases.

In chapter 3, we develop a generic framework on which we shall based our
methodology. We introduce the analytical model that integrates the load sharing.
routing and congestion control problems. We formulate the problem on the path
flow space. such that the decisions are done at the source nodes. We define the key
system variables and the structure of the cost functions and the state space model.
for which more details are given at the application sections of following chapters.

In chapter /. we develop three novel methodologies for the quasi-static prob-
lem: i) in the team optimization methodology, the classes of jobs cooperate in
using the resources of the system for the socially optimum, i1} in the Nash game
methodology, the classes of jobs compete among themselves and each class tries to
operate optimally for its own jobs, and iii) in the Stackelberg game methodo-
logv, some classes of jobs have more power than others, for example priorities. For
each methodology, we develop three alternative formulations of the joint problem,
namely a Nonlinear Programming, a Nonlinear Complementarity Problem and a
Variational inequality formulation. For each formulation, we state the necessary
and sufficient conditions for existence and uniqueness of the solution. From the
IKarush-Kuhn-Tucker conditions, we also derive the abstract form of the solution,
that there should be flow only on minimum length paths, to minimum length desti-
nations, The length at each system resource is appropriately defined for each case.
Then we apply these three methodologies to datagram, virtual circuit and inte-
grated services networks. For each of these networks, we introduce cost functions
for multiple classes and for priority classes of jobs. We also explicitly solve three
examples: 1) In the first example, two classes of jobs share two processors. The
objectives are the minimize the expected job delays. We give in closed form the
policies that achieve the team optimum solution and the Nash equilibrium solu-
tion and we further investigate them numerically. ii) In the second example, two
preemptive priority classes of jobs share two processors. The objectives are the
minimize the expected job delays. We give in closed form the policy that achieves

the Stackelberg equilibrium solution and we further investigate it numerically.
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ii1) In the third example. two classes of jobs share two servers. Packets from the
first class may be queued waiting service in front of server, while packets from the
other class are dropped when there are more than a threshold jobs into the system.
Then, the first class wants to minimize its expected delay, while the other class
wants to minimize its blocking probability. We find the policy that achieves the
Nash equilibrium solution and we further investigate it numerically.
In chapter 5, we develop three novel methodologies for the dvnamic problem:

1) the dynamic team optimization methodology, ii) the dynamic Nash game method-
ology, and iii) the dvnamic Stackelberg game methodology. For each methodology.
we develop three alternative formulations of the joint problem, namely an Optimal
Control, a Nonlinear Complementarity Problem and a Variational Inequality for-
mulation. For each formulation, we state the necessary and sufficient conditions for
existence and uniqueness of the solution. From Pontryagin’s maximum principle,
we also derive the form of the solution. that there should be flow only on minimum
length paths, to minimum length destinations, The length at each system resource
1s appropriately defined for each case. Then we apply these three methodologies
to datagram, virtual circuit and integrated services networks. We develop new dy-
namic queueing models for multiple classes and priority classes of jobs, as well as
linearized approximate dynamic queueing models and Wiener process models. We
introduce several new cost functions and state constraints. We explicitly solve an
example for virtual circuit networks. We consider a virtual circuit network with
Poisson arrivals of virtual circuits and packets, and exponential service require-
ments. We want to minimize the expected cost of servicing or rejecting virtual
circuits, minimize the expected cost of packet delay and maximize the expected
profit from packet throughput. We find the dynamic team optimality conditions
and we propose a state dependent routing and congestion control algorithm. We
investigate and compare (via simulation) this state dependent routing algorithm
to the optimal quasi-static algorithm. We find that the more often that we up-

date the state dependent algorithm and the more recent information that we use
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the better. When the updating period is not much larger than the mean interar-
rival time of virtual circuits. then this state dependent algorithm achieves smaller
average packet delay than the optimal quasi-static algorithm.

[n chapter 6. we introduce another novel methodology for decentralized dy-

namic load sharing, routing and congestion control. We propose stochastic learn-
Ing automata at the source nodes of the system for admitting or rejecting jobs,
for selecting the destination node for job processing, and for selecting the routing
path to the destination node. These decisions will be done probabilistically bv
learning automata algorithms that will update their action probabilities accord-
ing to measurements of the path and source-destination lengths. The path and
source-destination lengths are those derived in the dvnamic optimality conditions
of chapter 4. We also introduce novel classes of stochastic learning automata:
1) state dependent learning automata., whose adaptation rates are functions of
the system state, 11} two-step learning automata. that use larger adaptation rates
when the selected action repeatedly gives good performance, iii) multiple response
learning automata, that use different adaptation rates for different system response
(not just the favorable/unfavorable response of previous learning automata). We
prove that these learning automata are feasible at each step, non-absorbing. strictly
distance diminishing, ergodic and expedient. We apply this methodology to data-
gram, virtual circuits and integrated services networks. We give an example, where
we make virtual circuit routing decisions using stochastic learning automata algo-
rithms. We show (via simulation) that by suitable tuning the adaptation rates of
the algorithms, the learning automata achieve smaller average packet delay. We
also show that a path length proposed in chapter 5, is superior to a shortest-queue-
type routing, usually used in real networks.

Finally, in chapter 7, we conclude on our proposed unified game-theoretic

methodology for the multi-objective joint load sharing, routing and congestion

control problem in distributed systems and suggest directions for further research.



1.7 Contributions of the Dissertation

The major contribution of this dissertation is that it develops a novel approach
for the decentralized joint load sharing, routing and congestion control problem,
based on game theory and stochastic learning automata theory.

More specifically, our contributions are :

1) We solve joint load sharing, routing and congestion control problem. Solving
each problem separately and then combining the derived policies results in only
suboptimal solution, because there is strong dependency among these policies.
Therefore, we consider the joint problem and optimize the system performance with
respect to load sharing, routing and congestion control decisions simultaneously.

2) We introduce a novel queueing model for the joint problem on the path flow
space. We also introduce the cost functions for each class of jobs and present
the generic form of the state space evolution and state constraints. Having a
mathematical model always help in formulating and solving a problem. We use this
generic form of the model in the optimization formulations. Subsequently, when
we specialize to specific network types, we develop more detailed cost functions,
state space models and state constraints.

3) We develop three novel methodologies for both the quasi-static and the dy-
namic joint problem. Previous studies on either of these problems assume the
optimization of a global objective function. However, different classes of jobs may
have different objectives, sometimes even conflicting. Furthermore, in almost all
distributed systems, not all jobs are treated the same way. Some jobs (e.g.. inter-
active) have higher priority than others (e.g. batch) jobs. Therefore we introduce
a team optimazation methodology for classes of Jobs that cooperate for optimizing a
combination of their objective functions. We introduce a Nash game methodology,
for classes of jobs that compete among themselves for the system resources, and
each class tries to optimize its own objective. Finally, we introduce a Stackelberg
game methodology, for classes of jobs, with some classes having more power than

others.
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4) We present three novel formulations for each methodology. We formulate
the joint problem as a Nonlinear Programming (quasi-static case). as an Optimal
Control or Dynamic Programming (dynamic case). as a Nonlinear Complementa-
rity and as a Variational Inequality Problem. We derive the conditions for eris-
tence, uniqueness and optimality of the solution. Having three alternative formu-
lations for the joint problem provides larger flexibility in solving it. In order to
solve a specific instant of the joint problem. we can use algorithms used to solve
Nonlinear Programming, Optimal Control, Nonlinear Complementarity or Varia-
tional Inequalities Problems. Also, for specific network type. the cost functions
may satisfy the conditions of a formulation and not those of another formulation.

5) We derive the optimality conditions for each methodology. Traffic flow should
be non-negative only for source-destination pairs of minimum length and on paths
of minimum lengths. where the lengths are appropriately defined in each case. It is
not only important to solve the joint problem, but also gain insight on the structure
of its solution. Then we may also use more suitable algorithms in solving it, or
even be satisfied with a suboptimal solution that is close enough to the optimal
one. We can also devise heuristic algorithms that will be based on the optimality
conditions.

6) We apply the proposed methodologies to Datagram, Virtual Circuit and
Integrated Services Networks. We specialize our cost functions to specific cost
functions suitable for each network type.

7) We explicitly solve several ezamples and derive the team optimum, the Nash
equilibrium and the Stackelberg equilibrium solution. Investigation of specific
examples provides us with insight on the structure of the strategies for each class,
as well as their performance. For example, in a two-class two-processor load shar-
ing problem, we have a multiplicity of team optimum solutions, there is also an
optimum solution that 1s independent of the arrival rate of one class. In another
load sharing example of two preemptive priority classes that share two proces-
sors, we found a conservation law. and that the low priority class decisions are

independent of the arrival rates in some cases.
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8) We develop novel dynamic queueing models. We develop state space models
for the expected number of packets in a resource as well in the queue tor multiple
classes and priority classes. We also develop linearized state space models. These
dvnamic models can be used in the proposed methodologies for the specific network
tvpe under consideration. _

9) We develop novel performance measures for specific network types. We use
one class of these measures to estimate the length (load) of a resource as a convex
combination of its current length and its future expected length. We show (via
simulation) that this length is superior to some others used in real networks.

10) We propose new state dependent virtual circuit routing algorithms and show
(via simulation) to be superior to the optimal quasi-static ones. We also show that
it is very important to use the most recent information about the network state.

11) We propose decentralized asynchronous dynamic load sharing, routing and
congestion control decisions using stochastic learning automata. In an uncertain
environment, our knowledge about the system state 1s inaccurate and obsolete.
So, instead of taking a definite control decision, we do not overreact but move
slowly and steadily towards the best decision. A learning automaton has also
more flexibility than a deterministic decision (which is a special case of the learning
automaton). since by tuning its parameters we can control its adaptation rate and
its stability.

12) We introduce three novel classes of stochastic learning automata algorithms:
|) state-dependent learning automata, whose adaptation rates are functions of the
system state and therefore may follow it more closely. ii) two-step learning au-
tomata, that use larger adaptation rates when the selected action repeatedly gives
good performance and therefore we have more confidence that it will achieve good
performance at the next step, ii) multiple response learning automata, that use dif-
ferent adaptation rates for different system responses and therefore reward more
a very good response, reward less a fair response, penalize a bad response and
penalize heavily a very bad response.

13) We apply the learning automata to Datagram, Virtual Circuit and Integrated

Services Networks. At each source node, a learning automaton selects the best
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destination node for processing the job and another one rejects the job or routes
it through a path to its destination.

14) We implement and compare ( via simulation) virtual circuit routing using
several learning automata algorithms and different.performance measures. We show
that all proposed learning automata algorithms perform well and frequent updating
with the more recent information provides better performance. For virtual circuit

routing, its is also important to include in the link length function both the number

of packets and virtual circuits.
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Chapter 2

Previous Studies

[n this chapter, we present a survey of historically important studies on each one
of these three problems. The only relevance of these studies to this dissertation
is that they consider either the load sharing, or the routing, or the congestion
control problem. In this dissertation, we develop a novel and unified methodology
for solving the joint problem both for the quasi-static and the dynamic cases.

We classify previous studies in the load sharing or the routing section accord-
ing to the intention of their authors to give the corresponding flavor to their work.
Note that if the communication network is ignored in the model, then the load
sharing and the routing problems are mathematically equivalent. In the load shar-
ing problem, the jobs share some processors for processing, while in the routing

problem, the jobs share some link for transmission.

2.1 Load Sharing (or Load Balancing)

[n this section, we present previous studies on the quasi-static and dynamic load
sharing problem. We do not consider the static allocation problem, where the set

of jobs is given and it is asked to allocated the jobs onto the set of processors.
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1) Quasi-static load sharing.

Here, the load sharing decisions depend on the arrival and service distributions.
The usual approach is to formulate the problem as a nonlinear programming prob-
lem to minimize the expected job response time with respect to the link flows.

Buzen & Chen [81] and Ni & Hwang [352, 353 study the problem for a
multiprocessor, where there 1s no communication network. Gao. Liu & Railey 181
minimize the expected job response time and the root mean square difference of
the load among the sites,

de Souza e Silva & Gerla [124] model the system as a product form queueing
network with fixed closed chain routing. They minimize a measure of the average
delay with respect to the open chains flows. Tantawi & Towsley 479] model each
computer site as well as the network as single nodes. They minimize the expected
job response time. Lee & Towsley [293. 294] give priority to either local or remote
jobs. They use matrix geometric techniques and integer programming to find
the thresholds. Lee, Towsley & Choi [295] formulate the problem with reliability
constraints.

Kurose & Simha [279, 277, 278 use first and second derivative algorithms,
as well as [450] stochastic approximation algorithms for load sharing. Lin. Yee
& Raghavendra [303 consider the joint load sharing and routing problem and
minimize a linear combination of the expected job response time at the computer
sites and the expected message delay in the network.

In contrast to these studies, that consider a single global objective, Economides
& Silvester [138] formulate the multi-objective problem for two preemptive priority
classes of jobs as a Stackelberg game. Each class of jobs wants to minimize its own
expected response time. They derive the algorithm that achieves the Stackelberg
equilibrium. In this dissertation, we further extend our work to the joint quasi-
static load sharing, routing and congestion control problem in distributed systems.
We formulate and solve it as a static team optimization, as a static Nash game

and as a static Stackelberg game problem.
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2) Dynamac load sharing

Here, the load sharing decisions depend on the current network state. Most
studies on dynamic load sharing first propose a policy, and then evaluate its per-
formance using queueing models or simulation.

Glorioso & Colon [194]| consider a process oriented system. A process requesting
service from another process is routed through the network until it finds it or fails.
They use learning automata to update the routing probabilities. Glorioso & Osorio
1197 also use learning automata for updating the probabilities for a multiprocessor
system.

Chow & Kohler [103] analyze the performance of homogeneous two-processor
systems under several algorithms. They also [102| analyze heterogeneous systems.
Bryan & Finkel 78] propose a bidding algorithm that sends jobs from a high loaded
site to a light loaded one. Livny & Melman 308 show that when no load sharing
exists in a broadcast network, then there 1s a large probability that at least one
node 1s 1dle while jobs are queued at some other node.

Stankovic 460, 462| applies Bayesian decision theory to the problem and (461
investigates three algorithm via simulation. He also (463| uses a stochastic learning
automaton and a bidding algorithm. Mirchandaney & Stankovic [329] show via
siinulation that learning automata perform better than Bayesian decision theory
and double bias load sharing in moderate loads and in heavy loads that cause
significant delays in the subnet.

Wang & Morris 506] compare several sender and receiver- initiated algorithms
with the same level of information available. They conclude that receiver-initiated
algorithms have the potential to outperform sender-initiated algorithms.

Eager, Lazowska & Zahorjan 132, 134| conclude that sender-initiated algo-
rithms are preferable at light to moderate loads, while receiver-initiated algorithms
are preferable at high loads. They also [133] suggest that limited performance im-
provement can be achieved if processes migrate more than once.

Yum & Lin [528] investigate four algorithms via simulation. Ni, Xu & Gendreau

354 propose a bidding algorithm to maximize processor utilization and minimize
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communication overhead. Chou & Abraham [99. 100] use a linear mean-square
estimator to predict the load at the processors.

Kurose, Singh & Chipalkatti [280] and Kurose & Chipalkatti [276] consider soft
real-time systems in which jobs arriving to the svstem must complete execution
within a specified time constraint, otherwise they are lost. The objective is to
minimize the percentage of jobs lost.

Yu, Balsamo & Lee [520, 521, 522| evaluate different algorithms to achieve a
compromise between balancing the load and reducing communication overhead.
They propose an algorithm which takes into account load sharing decisions. Ci-
ciani. Dias & Yu [108] compare several algorithms to find that the decisions should
be based on the effect on all transactions in the system, rather than on incoming
transactions alone.

Lu & Carey [309] minimize the load unbalance. Hsu & Liu [226] investigate
three algorithms based on the estimated unfinished work or the queue length. Hac
& Johnson [207, 206] suggest that the parameters of the algorithms should be
properly tuned. Hac & Jin [205, 206] consider sender-initiated algorithms with
thresholds either on the queue length or the amount of CPU time of active pro-
cesses.

Chang & Livny 94 consider jobs with deadlines. They conclude that sender-
initiated algorithms outperform receiver-initiated algorithms when the load is light.
Mutka & Livny [340] investigate via simulation three algorithms. They achieve to
protect light users when a few heavy users try to monopolize all free resources.
Krueger & Livny 271] examine the means and standard deviations of wait times
and wait ratios, and the correlations between wait ratio and service demand as well
as between wait time and service demand. They conclude that different algorithms
optimize different ob jectives.

Ferrari & Zhou [151, 148] and Ferrari (151, 150] propose a load index for load
sharing decisions. Zhou & Ferrari [532] conclude that algorithms that use periodic
load information exchanges and algorithms that acquire such information on de-
mand provide comparable performance. Zhou [531] uses traces from production

systems 1n a simulation study and compare seven load sharing algorithms. He
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concludes that algorithms with periodic or nonperiodic load information exchange
perform similarly. Source-initiative algorithms were found to perform better than
server-initiative ones.

Leland & Ott [300, 299| analyze traces and conclude that the job service re-
quirement is not exponentially distributed. They also conclude that job migration
can improve the response ratio of jobs with long service requirement. Igbal, Saltz
& Bokhari [230] compare static and dynamic algorithms. Ferguson, Yemini &
Nikolaou [146] describe a microeconomic approach to the load sharing problem
based on auctions. Processors use auction models to allocate their CPU to jobs
that compete by issuing bids. Thomasian [483] proposes several algorithms based
on queueing network models to minimize the expected response time or optimize
the job mix.

Liu & Silvester [307] propose a receiver-initiated algorithm to balance the work-
load. They use thresholds for transferring jobs from heavily loaded sites to lightly
loaded ones. They also 306 propose a two-mode algorithm that works as receiver-
initiated in heavy loads and sender-initiated in light loads. Pulidas, Towsley &
Stankovic [390] consider a sender-initiated algorithm, where an external arriving
job. that finds more than a threshold jobs in its local site, 1s transferred to another
site. The objective 1s to minimize the expected response time.

Bonomi 60, 61, 62 proposes the use of queue lengths instead of processor uti-
lization for load sharing decisions. Bonomi & Kumar [63, 64| show that minimizing
the expected job response time 1s equivalent to balancing the server idle times in
a weighted least squares sense. They use processor utilization to allocate jobs on
processors. Kumar & Bonomi [272] use a stochastic approximation algorithm to
balance the load for a two processor system. Kumar [273] uses stochastic appro-
ximation techniques based on the processor idle time. Bonomi [62] analyzes the
join-the- shortest-queue algorithm when the service discipline is processor sharing.

Cassandras & Lee [86] minimize the loss probability in systems where a job is
lost if its waiting time exceeds its deadline. Weinrib & Shenker [510, 441] consider

a finite number of fast servers and an infinite number of slow servers and show via



simulation that for heavy load it is better never to queue at a fast server. but use
a slow server.

Towsley & Mirchandaney [487] investigate the effect of the communication de-
lay in the performance. They conclude that algorithms that use only local state
information achieve comparable performance to those that use global state informa-
tion, when the communication delay is high. Mirchandaney, Towsley & Stankovic
331, 330] analyze three algorithms using matrix-geometric solution techniques and
recommend load sharing for highly loaded systems.

('asavant & Kuhl [85] investigate the role of state information on the perfor-
mance achieved by load sharing. They conclude that it is better to use a small
amount than to gather a large amount of information. since this will cause a huge
overhead. They also provide a taxonomy of load sharing algorithms [86]. Banawan
& Zahorjan (21 use semi-Markov decision processes to show that no optimal
policy exists that uses only the instantaneous queue length independent of system
utilization.

Kleinrock & Korfhage [257] use a Brownian-motion-with-drift model to analyze
the transient system behavior. Efe & Groselj [142] conclude that under heavy
loads. a load sharing policy may perform worse than no load sharing case, due
to the overhead that it produces. Leff, Yu & Lee [296] use regression analysis
to estimate the response time. Boel & Schuppen [57] discuss several dynamic
algorithms. Avritzer, Gerla, Ribeiro, Carlyle & Karplus [18] conclude that load
sharing 1s effective even in the presence of high overheads. and careful tuning of
the algorithms parameters should be done.

In contrast to these studies, that consider a single global objective or ad hoc
techniques, in this dissertation, we further extend our work to the joint dynamic
load sharing, routing and congestion control problem in distributed syvstems. We
formulate and solve it as a dynamic team optimization, as a dynamic Nash game

and as a dynamic Stackelberg game problem.



2.2 Routing

[n this section, we present previous studies on the quasi-static and dynamic routing

problem.

2.2.1 Datagram Networks

1) Quasi-static datagram routing

Here, the routing decisions depend on the arrival and service distributions. The
usual approach is to formulate the problem as a nonlinear programming problem
to minimize the expected job delay with respect to the link or path flows.

Wardrop 307! calculates the traffic patterns according to the user optimiza-
tion criterion and the system optimization criterion, for a network consisting of
two nodes connected by n independent paths Dafermos & Sparrow [120] develop
the optimality conditions for system and user optimum. Fratta, Gerla & Klein-
rock [172] use a steepest descent method, called flow deviation, to find the flow
assignment. Cantor & Gerla [83] propose a method, based on decomposition tech-
niques. for finding the flow assignment. Schwartz & Cheung [433] propose the
gradient projection algorithm to find the flow assignment, for networks with a
relative small number of commodities, since it needs less computation time than
the flow deviation method. Stern [470] uses relaxation methods to find the flow
assignment,

Gallager [179, 178! proposes a distributed loop-free algorithm for finding the
flow assignment. Ephremides [144] extends Gallager’s algorithm to mixed network
composed by ground and satellite links. Bertsekas, Gafni & Vastola [36] present
computational results using gradient projection algorithms for finding the flow
assignment. Bertsekas [41, 40, 39| propose a gradient projection algorithm. Bert-
sekas, Gafni & Gallager (43, 44] also propose second derivative algorithms, that
may be viewed as approximations to a constrained version of Newton's method.
Bertsekas, Hosein & Tseng (45 study the convergence of a dual Gauss-Seidel type
relaxation method for network flow problems. Tsai, Huang, Antonio and Tsai 491

present iterative algorithms for box-constrained minimization problems.

23



Kamoun & Kleinrock 241 demonstrate the efficiency of hierarchical routing
for large networks. Kobayashi & Gerla [264] consider the single objective multiple
class routing problem in closed queueing networks. Each closed chain corresponds
to a different class of customers. They minimize the average delayv, which is not
convex. for closed chains routing, and therefore local minima exist. Bovopoulos &
Lazar 73. 72, 74. 68 investigate the routing and flow control problem for queueing
networks with nonzero acknowledgment delay. They maximize the throughput
such that the end-to-end expected delay i1s bounded.

Chen & Meditch [97] propose two interactive algorithms, where the first algo-
rithm generates a flow assignment, and the second algorithm generates a loop-free
flow assignment. Saksena 416] analyzes routing with constraints on the number of
hops for each path, on the number of paths, and on the end-to-end average delay.
Chang & Wu 94| propose an algorithm that at each iteration updates both the
estimate of external traffic input and the flow assignment. Pavlidou [377] uses the
variable reduction method for finding the flow assignment.

Economides & Silvester |141] formulate the datagram routing in networks with
variable quality links. Some links have high error rate and therefore packets fail and
must be retransmitted. They formulate the minimization of the expected packet
delay as a nonlinear programming problem and they solve it. They also introduce
learning automata as routers. According to the objective, they use as feedback
information the average packet delay, or the success/failure of a transmitted packet.

In contrast to these studies, that consider a single global objective, Economides
& Silvester [139, 140] solve the routing problem as a team optimization problem.
when the classes of packets cooperate and as a Nash Game. when the classes
of packets compete among themselves. In this dissertation, we further extend
our work to the joint quasi-static datagram load sharing, routing and congestion
control problem in distributed systems. We formulate and solve it as a static team

optimization, as a static Nash game and as a static Stackelberg game problem.



2) Dynamuc datagram routing

Here, the routing decisions depend on the current network state.

Frank & Taylor [169. 170! describe the network state using discrete state space
equations and formulate the routing problem as a linear program.

Boehm & Mobley 56 recommend the biadaptive ( for large networks and
for small networks with securityv constraints). a dvnamic-programming-based (for
small networks without constraints) and a graph-theory-based algorithm (for large
networks). Glorioso. Grueneich & Dunn [195) and Glorioso, Grueneich & McElroy
196! propose learning automata for self organization and dynamic routing.

Agnew (2, 3] proposes an adaptive algorithm extracted from the quasi-static
algorithm. He also 4] introduces a nonlinear dynamic model for queueing systems.
He uses this model to study the stability and transient behavior of a congestion-
prone svstem and to analyze policies for congestion control.

Winston [515] and Weber 508] show that join-the-shortest-queue policy maxi-
mizes the discounted number of customers to complete service in any time t. Flatto
& McKean [161] also analyze the join-the-shortest-queue policy. Foschini [168] and
Foschini and Salz [167] investigate the dynamic routing problem in heavy traffic
using diffusion processes.

Segall 437| formulates the problem as a linear optimal control problem with
linear state and control variable inequality constraints. He also suggests methods
for incremental delay estimation. Moss & Segall [335] present the conceptual form
of an algorithm to find a feedback solution when the inputs are constant over
time. Meditch [327] uses a state space approach and investigate controllability
and observability in the presence of delayed information patterns. He proposes
feedback control policies.

Chu & Shen [106, 107 present a policy for hierarchical routing and flow con-
trol. When all channels along the primary route do not exceed a threshold, then
the primary route is used, otherwise alternative routes are used. Rudin 1409
presents a taxonomy of routing strategies and then he proposes the delta routing
and compares it to other algorithms. The delta routing combines a centralized

and a decentralized policy. The central coordinator prepares the overall strategy
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and sends it to the nodes. Then the nodes use this information together with
their local state to decide the routing. Yum & Schwartz 525. 526, 527. 436, 436’
superimpose local adaptivity on top of a static flow assignment. They propose
the Join-biased-queue rule that is the join-shortest-queue with a threshold term on
the queue lengths. Yum 523, 527 proposes a deterministic routing sequence to
achieve the flow assignment. He also proposes a semidynamic version of it for a
time varyving traffic.

Bertsekas (41. 38, 42| investigates the stability, convergence and speed of conver-
gence of routing algorithms. Schwartz & Stern [433] survey studies on the routing
problem up to 1980. McQuillan, Richer & Rosen [326] describe the algorithm for
the ARPANET. They use the link delays as link length.

Ephremides, Varaiya & Walrand '145] show that the join-the-shortest-queue
policy minimizes the expected total time for the completion of service of all jobs
which arrive during a time interval, when the queue lengths are observed. When
the queue lengths are not observed, it is best to alternate between queues. Olsder &
Suri 362] use dynamic programming to derive optimality conditions for a dynamic
routing problem, where one of the two servers may fail. Hahne [208] computes
dynamic routing strategies for a system of two unreliable finite storage servers.

Boorstyn & Livne [65] propose a two-level adaptive routing, where the first
level 1s the quasi-static solution of the problem, while the second level is dynamic.
Chu, Boorstyn & Kershenbaum [105] investigate by simulation several algorithms.
Agrawala, Tripathi & Ricart [6] introduce the virtual waiting time technique which
does not depend on any arrival and service time distribution. Agrawala & Tripathi
5 show that the deterministic techniques based on the best stochastic rules are
not necessarily optimal.

Srikanta Kumar [454] use learning automata at every network node to route a
message over one of its outgoing links to its destination according to a measure of
the expected delay on this outgoing link and from the next node to the destination.
Chrystall & Mars [104] use learning automata to route messages over the outgoing
links at every network node. They use the message delay in order to update the

probabilities of selecting each outgoing link. Simulation results show that at light
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traffic , random, delta and learning routing give comparable average message delay.
while at high traffic. learning routing performs better. Similarly, Mars. Narendra
L Chrystal (370 use learning automata to route packets over the outgoing links
at every network node. Simulation studies of packet routing in datagram networks
show that learning routing performs better than fixed rule routing especially at
high traffic.

Chou, Bragg & Nilsson [101] conclude that a deterministic strategy is better for
balanced traffic, while an adaptive strategy is better for unbalanced and chaotic
conditions. They also propose a second-order metric as queue length. Sarachik
& Ozguner [423] consider the problem of clearing congested single destination
networks for constant inputs. They formulate an optimal control problem and
propose an algorithm. Similarly, Sarachik 422, 424| considers the multi-destination
problem. He also [421] suggests a routing strategy based on thresholds.

Hajek & Ogier [210, 211| extend Segall’s work. They introduce a flow relaxation
concept to transform the optimal control problem into an 1nitial low optimization
problem. They first propose three algorithms: 1) a gradient descent with bending
algorithm, ii) a series of max-flow problems, and ii1) a search for successive bottle-
necks. Sasaki & Hajek [426] present iterative methods for finding state-dependent
strategies. They use flow relaxation to transform the problem and then a projected
descent direction method to solve it. Ogier [358] presents an algorithm to compute
the flow in a network with piecewise-constant capacities.

Filipiak [158, 156, 159, 155, 153] models the routing and congestion control
problem using nonlinear state space models and formulates the problem as an
optimal control problem. Then he shows that the optimal flow pattern is given by
the steady-state solution of the costate equations.

Muralidhar & Sundareshan [337, 338 present a two-level scheme for the com-
bined routing and flow control problem. At the lower level, the flow assignment 1s
calculated, while at the higher level a set of parameters are calculated. Casalino,
Davoli, Minciardi & Zoppoli [84] and Aicardi, Davoli & Minciardi [7| examine the
information structure of the dynamic routing problem by considering every node

as an agent in a team control problem setting. They define a nested information
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structure with a common past and suggest dynamic programming decomposition.
Ramamoorthy & Tsai [393] and Tsai. Ramamoorthy, Tsai & Nishiguchi 14937 pro-
pose a hierarchical routing algorithm and show the tradeoft between performance
improvement and communication overhead.

Mason 321] describes several applications of learning automata to networks.
He also (322 applies learning automata to datagram routing. Nedzelnitsky [349
introduces a learning automaton model for datagram routing. When a link 1s
used. its penalty probability increases according to its routing probability. Queue
delay (total bit length in queue) is used to update the link routing probabilities.
Simulation show that learning routing performs better than fixed rule and random
routing, especially in heavy traffic. Nedzelnitsky & Narendra [350] also propose
using stochastic learning automata for datagram routing.

Tsitsiklis 496] formulates an infinite horizon dynamic routing problem to two
servers, that may become unoperational. He shows that optimal policies are switch-
ing curves, each corresponding to a particular state of the servers. Maglaris 319
considers a two-level routing policy, where at the high level the quasi-static flows
have been found, while at the lower level adaptive decisions are made locally. He
formulates the local problem as a Markov decision process and shows that a deter-
ministic threshold policy minimizes the delay. Zhou & Maglaris [530] extend Yum's
two-level adaptive routing algorithm. The local decisions are based on thresholds
and priorities.

Kumar & Walrand [275) show that if there is a socially optimal policy for
a system with no arrivals, which can be implemented for each job following a
policy in such a way that no job ever utilizes a previously declined route, then
such a policy is an individually optimal policy for each job. Moreover this policy
continues to be individually optimal even if the system has an arbitrary arrival
process, but with past arrivals independent of future route-traversal times. Halfin
212] calculates bounds for the probability distribution of the number of customers
for the join-the-shortest-queue policy.

Whitt [511] shows that there are service time distributions for which the join-

the-shortest-queue is not optimal. He also shows that if, in addition, the elapsed
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service times of customers in service are known. the long-run average delay is not
always minimized by customers joining the queue that nunimizes their individual
expected delays. Rosberg [401] presents a policy based on a deterministic routing
sequence. Rosberg & Makowski [400. 402, show-that every routing policy which
minimizes the long-run expected holding cost is contained in the set of optimal
policies which minimize the total expected cost for a system with fixed initial
population and no new arrivals.

Stassinopoulos & Protonotarios 468, 469! suggest methods for congestion clear-
ing in minimum time for single destination networks. Stassinopoulos 465] solves
the minimum evacuation time problem for multiple destination networks. Stassino-
poulos & Kukutos [467] present an optimal control approach and an algorithm for
double ring networks.

Knessl. Matkowsky, Schuss & Tier [260, 261] consider the join-the-shortest-
queue policy and find the steady-state probability distribution of the number of
customers. Blanc [53] uses power series expansions to calculate state probabilities
for the join-the-shortest-queue policy in multiserver systems. Chang & Chang 93]
study routing of batch Poisson arrival to multiple synchronous servers. Beutler
& Teneketzis [47, 48] use dynamic programming for routing under imperfect in-
formation. They show that certain inequalities involving stochastic ordering of
information measures can be propagated inductively from one epoch to the next.
They show that the optimal policy i1s of threshold type.

Cassandras, Abidi & Towsley [86, 89] use perturbation analysis to estimate
on-line the marginal packet delays through links with respect to link flows. Zinky,
Vichniac & Khanna [533, 250] investigate the revised routing metric in the
ARPANET and MILNET. Under light loads, the metric behaves as a delay-based
metric. Under heavy loads, the metric 1s based on available capacity. Daneshrad &
Morgera [121] show via simulation that learning automata routing performs better
than shortest path and proportional routing. Glazer & Tropper [193] propose as
metric a combination of link and buffer utilization in a routing algorithm that
controls the congestion. Krishnan [268, 269] uses Markov decision processes and

propose a join-the-shortest-queune type scheme.



Economides & Silvester 141 introduce learning automata for datagram rout-
ing in networks with variable quality links. According to the objective, theyv use
as feedback information the average packet delay. or the success/failure of a trans-
mitted packet.

In contrast to these studies, that consider the system (or social) optimum,
and the user (or individual) optimum. in this dissertation. we consider the multi-
objective joint dynamic datagram load sharing, routing and congestion control
problem, where the classes of jobs play a game. The system (correspondingly
user) optimization approach is a special case of this game-theoretic approach- just
consider all classes as one (correspondingly, each class as composed by a single
job). We formulate and solve the joint problem as a dynamic team optimization,

as a dynamic Nash game and as a dynamic Stackelberg game problem.

2.2.2 Virtual Circuit Networks

In virtual circuit networks, we have extra difficulties due to the complex system
dynamics. The load sharing, routing and congestion control decisions are made
at virtual circuit arrival instants. Subsequently, no control 1s exercised over the
packet routing process, i.e. the network state is affected for longer periods than in
datagram networks. The virtual circuit network dynamics occur at two different
time scales. The fundamental point is that although the control is exerted at the
slower time scale, where the virtual circuit establishment / termination process
occurs, the network performance 1s measured at the faster time scale. where the
packet transport process occurs. Previous studies assume either independence
of the virtual circuit establishment / termination process and packet transport
process or imiting process rates. In this dissertation, we explicitly consider both
levels of traffic processes and their interaction.

Depending on the assumptions of how fast the network dynamics change, three

main approaches have been investigated for virtual circuit routing:
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1) In Static wirtual circuit routing the number of virtual circuits is given (i.e.

no virtual circuit arrivals} and the packet arrival rate per virtual circuit is also
given. Lhere exist two main formulations for the static virtual circuit routing

problem:

1.1) In the continuous nonlinear programming formulation. the decision vari-

ables are the flows on the links.

Gerla & Nilsson [188], Gerla.Chan & Boisson De Marca 187, Lam & Lien
285, 286], Kobayashi & Gerla [264], De Souza & Gerla [124] model a virtual
circuit network as a closed queueing network where each closed chain corresponds
to a low controlled virtual circuit. Packet arrivals belonging to a specific virtual
circuit that find its virtual circuit window full are lost. They use flow deviation -
tvpe algorithms and report numerical results.

1.2) In the 0-1 nonlinear programming formulation the decision variables are

the assignment or not of a given virtual circuit to a path.

Courtois & Semal [114] modify the flow deviation method for the non bifurcated
flow case. Gavish & Hantler [182], Gavish & Neuman [183], Narasimhan, Pirkul
& De [341], Lin & Yee [304], use Lagrangian relazation & subgradient optimization
techniques and report numerical results.

2) In Quasi-static virtual circuit routing, 1t is assumed that the externally ar-

riving traffic changes very slowly over time and individual offered traffic sample
functions do not exhibit frequently large and persistent deviations from their
averages |39, 497, 45|. Therefore the virtual circuit routing decisions may depend
only on the input and link flows.

For the case of "many small users” [176, 177,497, 45, where there is a very large
number of virtual circuits between each source-destination pair and each virtual
circuit has a very small packet arrival rate, Gafni & Bertsekas [177] show that the
routing updating period should be much smaller than the average virtual circuit
duration. In this case, Bertsekas [39], Tsitsiklis & Bertsekas {497], Tsai, Tsitsiklis
& Bertsekas [492], Tsai (489, 490] formulate the virtual circuit routing problem as a

continuous nonlinear programming problem with decision variables the flows on the

links or the paths. They use gradient projection - type algorithms to precompute
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the optimum flows. Then thev assign each new arriving virtual circuit on the paths
to achieve these optimum flows. Tsai [489] shows that deterministic assignment of
the new arriving virtual circuits is better than random.

Humblet. Soloway & Sleinka [228] define as link length in the Codex network
228. 45, the difference of the link cost function when a new virtual circuit 1s
routed through this link and when not. Then a new virtual circuit is routed along
the minimum length path. Gopal, Kadaba & Wieber [201] define as link length
the first derivative of the average number on this link with respect to the flow
through this link. The link length is updated only when the link utilization crosses
a threshold. Then a new virtual circuit is also routed along the minimum length
path. Jaffe & Segall [234] minimize the average delay over a range of arrival rates
with respect to link utilization thresholds and link lengths. Gersht 189] assumes
that the average virtual circuit duration is much larger than the average packet
delay in the network for the Telenet network. At every node, a new arriving virtual
circuit is routed through the outgoing link with the minimum number of virtual
circuits.

In contrast to these studies, in this dissertation, we further extend our work
to the joint quasi-static virtual circuit load sharing, routing and congestion con-
trol problem in distributed systems. We formulate and solve it as a static team
optimization, as a static Nash game and as a static Stackelberg game problem.

3) In Dynamic or Adaptive virtual circuit routing, it is assumed that the net-

work state is continuously changing due to real time traffic fluctuations. Therefore,
the routing decisions are taken for each virtual circuit independently and depend
on the current network state. for example the current network topology, the current
number of packets & virtual circuits, the current virtual circuit & packet arrival
rates, the current service requirements, the current link error rates etc.

Two main formulations exist for the dynamic virtual circuit routing problem:

3.1) In the stochastic learning automata formulation, the fact that our infor-

mation about the network state is inaccurate is incorporated into the routing

decisions.
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Economides, Joannou & Silvester [136]| introduce state-dependent multiple re-
ward / penalty stochastic learning automata updating schemes and use them for
virtual circuit routing. The idea here is not to overreact by completely trusting the
information we have about the network state. Instead of using a definitive decision
as to where to send a new arriving virtual circuit, we vary the routing probabilities
strongly favoring the minimum length path, i.e. we have a "probabilistic selection
of the minimum length path”. Note that, the routing along the minimum length
path (with probability 1) is a special case of the stochastic learning automata
routing. Thev define as link length the unfinished work due to packets and virtual
circuits currently on this link (for user optimization) or the increase in the current
number of packets due to the addition of a new virtual circuit on this link (for
systern optimization). In this dissertation, we further extend our work to the joint
dvnamic virtual circuit load sharing, routing and congestion control problem in
distributed svstems. We formulate and solve 1t as a dynamic team optimization,
as a dynamic Nash game and as a dynamic Stackelberg game problem. Then we
introduce learning automata to find the optimum decisions in a decentralized and
asynchronous way.

3.2) In the optimal control formulation, the network state dynamic evolution

is described by a state space model of difference or differential equations.

Gafni & Bertsekas [176] consider a simple stochastic problem that turns out
to be an NP-complete problem. Then they transform it to the corresponding
deterministic problem that is still a hard problem. Finally, they suggest a discrete
time heuristic - routing along the minimum first derivative length path.

Tipper & Sundareshan [485] consider a single source-destination virtual circuit
routing problem. They develop a nonlinear dynamic queueing model for the
average number of packets of a virtual circuit and of interfering traffic at each link
along the paths from its source to its destination. Pontryagin's maximum principle
provides the necessary conditions for optimal virtual circuit routing. They propose
routing of this virtual circuit along the minimum length path, where the length ot

a link is a quadratic function of the average number of packets on it.
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Economides & Silvester [136 consider the routing and congestion control prob-
lem for window flow controlled single source-destination virtual circuit networks
with error prone links. They develop a queueing model for each error controlled
and window flow controlled link. They express the link capacity as a function
of the link error rate, link transmission rate, link propagation delay, ACK delay.
time-out delay and other flow control parameters. They introduce dynamic non-
linear queueing models that describe the dynamic interaction of the virtual circuit
and packet processes. Then they define a multi-objective function of the average
number of virtual circuits and packets on every link, the virtual circuit rejection
flow and the packet throughput on every link. Pontryagin’s maximum principle
provides the necessary optimality conditions that are also sufficient for this convex
virtual circuit routing and congestion control problem. A new virtual circuit is
routed along the minimum length path. The length of a link i1s a quadratic func-
tion of the average number of packets on it and a linear function of the average
number of packets per virtual circuit, of the cost per virtual circuit and of the
packet throughput profit.

In contrast to these studies, that consider a single global objective, in this
dissertation, we also consider the non-cooperative multi-objective joint dynamic
virtual circuit load sharing, routing and congestion control problem in distributed
systems. We formulate and solve it as a dynamic team optimization, as a dynamic

Nash game and as a dynamic Stackelberg game problem.

2.2.3 Integrated Services Networks

1) Quasi-static multi-class routing

Here, the routing decisions depend on the arrival and service distributions.

Maglaris, Boorstyn, Panwar and Spirtos [317, 318| consider routing in burst-
switched networks. They linearize the function of the frozen voice trafhic and
formulate a linear programming problem with constraints for the data trathc. Yum
& Schwartz [524] investigate the routing overhead in integrated circuit/packet-
switched networks. Wei, Youwei and Zheng [509] suggest an algorithm that chooses

the shortest path weighted by available capacity factors for circuit-switched traffic
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and chooses the path which has the minimum product of queueing length and
available capacity factors for packet-switched traffic.

Okazaki & Schwartz [360] describe routing problems in networks with a
movable boundary scheme. Thev propose an algorithm to minimize the weighted
sum of blocking probability and average delay. They conclude that voice and data
should be routed on the same paths. Ibrahim & Elhakeem (229 consider movable-
boundary-type networks and suggest a combined routing/capacity assignment al-
gorithm. Cassandras, Kallmes & Towsley |90 consider real-time traffic that has
deadline constraints. Maxemchuk & Zarki 324] survey routing and flow control
techniques developed for wide area, local area and metropolitan area networks and
show the desirable characteristics for high speed wide area networks.

In contrast to these studies, in this dissertation, we further extend our work
to the joint quasi-static multi-class load sharing, routing and congestion control
problem in distributed systems. We formulate and solve it as a static team opti-

mization, as a static Nash game and as a static Stackelberg game problem.

2) Dynamac multi-class routing

Here, the routing decisions depend on the current network state.

Reed & Kim [397] introduce a dynamic routing algorithm that uses both local
and global information about the delay across the paths. Bernabei, Calabro & Lis-
tanti [35] suggest a flooding routing scheme in an ATM switch. Szymanski 475
proposes a hot-potato or deflection routing in a fiber optic packet switched hyper-
cube. Borgonovo & Cadorin [67] investigate a locally-optimal deflection routing in
the Bidirectional Manhattan Network.

In contrast to these studies, in this dissertation, we further extend our work to
the joint dynamic multi-class load sharing, routing and congestion control problem

in distributed systems. We formulate and solve it as a dynamic team optimization,

as a dynamic Nash game and as a dynamic Stackelberg game problem.



2.3 Congestion Control

In this section. we present studies on congestion control. Traditional packet switch-
ing networks have employed typically window-based flow control schemes in order
to regulate the traffic. Today’s trade towards high speed networks makes such

schemes inappropriate. Therefore, we do not consider window-based algorithms.

2.3.1 Datagram Networks

1) Quasi-static datagram congestion control

Here, the congestion control decisions depend on the arrival and service distri-
butions.

Gallager & Golestaani [180] use a penalty function approach to model and
solve the joint flow control and routing problem. They find the rates that achieve a
tradeoff between user cost functions and network congestion cost. Then a dynamic
flow control algorithm admits or rejects individual packets.

In contrast to these studies, in this dissertation, we further extend our work
to the joint quasi-static datagram load sharing, routing and congestion control
problem i1n distributed systems. We formulate and solve 1t as a static team opti-
mization. as a static Nash game and as a static Stackelberg game problem.

2) Dynamic datagram congestion control

Here, the congestion control decisions depend on the current network state.

Most studies on dynamic congestion control define an ad hoc technique for
controlling the traffic and then develop the corresponding queueing model. Sub-
sequently, they evaluate its performance for different values of some adjustable
parameters.

Pennotti & Schwartz [378] develop a queueing model for analyzing some con-
gestion control schemes where packets are blocked when the buffer occupancies
exceed a limit. Schwartz & Saad 434, 413] suggest a tighter control over new
packets with priority allotted to transit packets. They propose blocking of new

packets when the total node buffer occupancy exceeds a limut.
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Rudin & Muller 410. 411 indicate that it may be dangerous to try to study
flow control, routing or scheduling as isolated mechanisms. Lam & Reiser 287
and Lam [284] investigate the use of input buffer limits for congestion control.
Wunderlich. Kaufman & Gopinath [519| suggest a buffer reservation and processor
capacity allocation scheme.

Kamoun, Belguith and Grange [240] and Kamoun 239] propose a drop and
throttle low control policy based on a nodal buffer management scheme. At a
given node if the number of allocated buffers 1s greater than a limit value. then
new traffic is rejected, whereas transit traffic is accepted. If the total buffer area
is occupied, transit traffic is also rejected and, furthermore. it i1s dropped from
the network. Kleinrock & Tseng 258 propose two schemes that limit the permit
generation rate.

Filipiak (157, 153] formulates the congestion clearance problem as an optimal
control problem. Stassinopoulos & Konstantopoulos 466]| present an algorithm
for minimum delay clearing of congested single-destination networks, in minimum
time. They also give conditions for arrival rates, so that the minimal value for the
maximal delay encountered by any packet does not increase.

Hahne & Gallager [209] investigate the round robin scheduling for fair flow con-
trol. They maximize the minimum packet rate of a virtual circuit. Kim & Towsley
252 propose three packet discarding schemes and develop their queueing models.
Thaker & Cain [481 discuss the interaction between routing and flow control and
present a new scheme. Jacobson [232] describes the internet’s congestion control
mechanisms. Ramakrishnan & Jain [392] propose a dynamic congestion avoidance
scheme that sets up a congestion-indication bit on regular packets, then the source
node adapts to the new situation.

Hirano & Watanabe [216] evaluates a marking method for congestion control,
which marks packets exceeding the allocated bandwidth at user/network inter-
faces, and discards these marked packets only at congested nodes. Kamitake &
Suda [238] investigate a congestion control scheme and develop its queueing model.
Schulzrinne, Kurose & Towsley [430| investigate the selective discarding of a voice

packet based on the virtual work found by the packet on arrival to a queue. Petr
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& Frost [380] show how dynamic programming can be used to find an optimal
discarding policy for congestion control.

In contrast to these studies. in this dissertation, we further extend our work to
the joint dynamic datagram load sharing. routing and congestion control problem
in distributed systems. We formulate and solve 1t as a dynamic team optimization,

as a dvnamic Nash game and as a dynamic Stackelberg game problem.

2.3.2 Virtual Circuit Networks

1) Quasi-static virtual circuit congestion control

Here, the congestion control decisions depend on the arrival and service distri-
butions.

Jaffe [233| suggests that each virtual circuit adjusts its throughput rate to
achieve an ideal delay-throughput tradeoff. Bharath-Kumar 49| maximizes the
power by selecting the rate at which messages are allowed to enter the message
path and the average total number in the system. Bharath-Kumar & Jaffe [50]
investigate flow control algorithms to maximize the power. They control the rate
of message entry to every virtual circuit.

In contrast to these studies, in this dissertation, we further extend our work
to the joint quasi-static virtual circuit load sharing, routing and congestion con-
trol problem in distributed svstems. We formulate and solve 1t as a static team
optimization, as a static Nash game and as a static Stackelberg game problem.

2) Dynamic virtual circuit congestion control

Here, the congestion control decisions depend on the current network state.

Matsumoto and Mori 323! restrict gradually the number of virtual circuits
when the queue lengths exceed some limits. Katz & Rubin [248] analyze a virtual
circuilt admission scheme that limits the total number of virtual circuits allowed to
share a channel. Golestani [200, 199| proposes an admission control that requires
the packet stream of each virtual circuit to possess a certain smoothness property
upon arrival to the network and a queueing control scheme that preserves this
property as packets travel inside the network. Bala, Cidon & Sohraby (20| propose

a leaky bucket type scheme that operates on a virtual circuit basis that limits the
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virtual circuit’s average rate and the burstiness. It marks packets into two classes
which are treated differently by threshold policies.

Economides & Silvester (136 consider the dynamic routing and congestion
control problem for window flow controlled single source-destination virtual circuit
networks with error prone links. They define a multi-objective function of the
average number of virtual circuits and packets on every link. the virtual circuit
rejection flow and the packet throughput on every link. Pontryagin’s maximum
principle provides the necessary optimality conditions that are also sufficient for
this convex virtual circuit routing and congestion control problem. A new virtual
circuit is admitted into the network if the cost that it will produce 1s less then the
profit that it will offer.

In contrast to these studies, 1n this dissertation, we further extend our work
to the joint dynamic virtual circuit load sharing, routing and congestion control
problem in distributed systems. We formulate and solve 1t as a dynamic team
optimization, as a dynamic Nash game and as a dynamic Stackelberg game prob-

lem.

2.3.3 Integrated Services Networks

1) Quasi-static multi-class congestion control

Here, the congestion control decisions depend on the arrival and service distri-
butions. There is some ambiguity with respect to where some proposed congestion
control schemes belong, i.e. quasi-static or dynamic. Since, most authors choose
to call their schemes dynamic, we shall refer to them on the next section.

In this dissertation, we further extend our work to the joint quasi-static multi-
class load sharing, routing and congestion control problem in distributed system:s.
We formulate and solve it as a static team optimization, as a static Nash game
and as a static Stackelberg game problem.

2) Dynamic multi-class congestion control

Here, the congestion control decisions depend on the current network state.
Hou & Lucantoni [219] propose a video/data transport mechanism with built-

in congestion control. Data calls have priority during light overload, while video
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calls have preemptive priority over data during heavy overload. Ohnishi, Okada
& Noguchi [359] discuss a virtual circuit admission control scheme and different
priority assignments to different classes.

Hui [227] and Filipiak [160. 154] suggest several congestion measures at the
packet. burst and call level. Gersht & Lee 191 propose a congestion control scheme
that reserves bandwidth at the virtual circuit set-up instant and chokes/relieves
only first-class packets in case of congestion. They also 190] develop an integer
optimization algorithm to find the thresholds for their congestion control scheme.
Sriram 457] suggests dropping the less significant bits in voice packets for con-
gestion control. Ramamurthy & Dighe 394, 395] propose a rate-based flow control
scheme. The rate of each virtual circuit is negotiated at call set up time.

Woodruff & Kositpaiboon [517] suggest that bursty traffic should be sta-
tistically multiplexed only if virtual circuit peak rates are low relative to the link
speeds, or burst durations are short. Decina, Toniatti, Vaccari & Verri 126| and
Decina & Toniatti [125] propose admitting a new virtual circuit into the network,
when the sum of peak rates of virtual circuits on any link composed its route does
not exceed the bit rate of that link.

Eckberg, Luan & Lucantoni [135] describe congestion and flow control strate-
gies. Sidi, Liu & Gopal [446| propose a leaky-bucket type scheme for congestion
control in order to smoothen the incoming traffic. Berger [32] analyzes a rate
control throttle scheme where both token and jobs queue. Sumita [472] describes
an output buffer management scheme based on a conservation law for an M/D/1
queue with finite capacity. Kroner [270] suggests the use of partial buffer sharing
instead of the push-out scheme and the separate route system.

In contrast to these studies, in this dissertation, we further extend our work to
the joint dynamic multi-class load sharing, routing and congestion control problem
in distributed systems. We formulate and solve it as a dynamic team optimization,

as a dynamic Nash game and as a dynamic Stackelberg game problem.
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2.4 Game Theory Approaches to Flow Control

In this section. we review previous studies on the quasi-static flow control prob-
lemn using a game theory approach. Although in this dissertation, we consider a
different problem (the quasi-static and dynamic joint load sharing. routing and
congestion control problem). we present these studies on the flow control problem.
so that the reader may have an integrated view of current research on network
optimization problems using a game theory approach.

Sanders [420. 418, 419] presents incentive flow control algorithms that allocate
transmission rates to each virtual circuit. Cansever [82] presents a greedy algorithm
to compute the Nash equilibrium and another algorithm to compute the Pareto
optimum for the flow control problem. Douligeris & Mazumdar [130, 129/ consider
the flow control problem and suggest an algorithm for finding the Pareto optimum
that maximizes the product of individual powers. They also [128] find the flow
control Nash and Stackelberg equilibria for specific examples.

Hsiao & Lazar 221, 224] show that the flow controls for team optimum are a
set of window-tvpe mechanisms. In 290, 222, 225, they consider the user opti-
mum flow control problem, in which each user maximizes i1ts average throughput
subject to a constraint on its average delay. They further 223| investigate the
flow control Nash equilibrium solution of Markovian queueing networks. Bovopou-
los & Lazar [75, 70, 69, 68| investigate iterative asynchronous algorithms for flow
control policies to achieve Nash equilibrium. They maximize either the through-
put under an average delay constraint, or the power. They also 71| suggest the
(Gauss-Seidel algorithm to find the Nash equilibrium that maximizes the power.
Ferguson, Nikolaou & Yemini [147]| consider the Pareto optimum flow control and

present algorithms to find 1t.
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Chapter 3

Queueing Model

In this chapter. we develop a generic framework on which we shall based our
methodology. We introduce the analytical model that integrates the load sharing,
routing and congestion control problems. We formulate the problem on the path
flow space, such that the decisions are done at the source nodes. We also introduce
the structure of the cost functions and the state space model. for which more details

are given at the application sections of following chapters.

3.1 Path Flow Model

We consider a distributed system as seen by jobs of class ¢, as a set of Links
L¢, of nodes N, of source-destination pairs SD°, of paths between a given source-
destination pair [sd], IIf ,, of destination nodes for a given source node s.|, Df, .

of all destination nodes D¢ =[] D, ;, of source nodes for a given destination
3]

node |.d], Sf,, and of all source nodes S° = U Sf 4, for jobs of class c.
]
The formulation of the joint load sharing, routing and congestion control prob-
lem can be done either on the link flow space or on the path flow space. In future
high speed computer communication networks the transmission delay will be ex-

tremely low and we will not want to spend extra time in network management

decisions inside the network. Therefore, the computationally intensive processes,
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such as the network management decisions, will be transferred outside of the net-
work either to the source or to the destination node. With this in mind. we
formulate the joint load sharing, routing and congestion control problem on the
path flow space, which means that the routing decisions will be done at the source
nodes. In this way, we also avoid loops, since the packets will follow a previously
determined loop free path.

('lass ¢ Jobs that require processing arrive at the source node [s.] with external
arrival rate '}'E‘;E{t} > 0 at time t (Figure 3.1). A load sharing decision 1s made as
to where these jobs will be processed. Let the fraction of jobs sent to node [.d| for
processing be vf ,(t). Since only one destination node is selected, the sum of the
load sharing fractions from node [.s] to all destination nodes [.d] is equal to one.

So, let us define the constraint set for the class ¢ load sharing decision variables to

be

v [s.] € 8¢ / such that

Y WYiat)=1 V[s]eS%  and
cD

¥q(t) 20 V[d]eDf), [s] €S|

For a more compact presentation we write the load sharing fractions from source
node |s.| to all destination nodes for class c as the vector Wf, \(t) = [... ¥f 4(t) ...},
from all source nodes to all destination nodes for class ¢ as the vector ¥¢(t) =
- ¥, () ...| and for all classes as the vector ¥(t) = [... ¥°(t) ...].

Since jobs arrive at the source node [s.| with external arrival rate jﬁ.}{t], then
the flow from source node [s.|, transferred for processing to the destination node
-], will be 7f, \(t) * ¥f,4(t).

Therefore, the total class ¢ flow that i1s transferred for processing to the desti-

nation node [.d|, due to load sharing is :
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Figure 3.1: Load sharing, routing and congestion control.
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i_s.jESF_d;

For a more compact presentation we write the flow transferred to the destina-

tion node |.d| due to load sharing reasons for all classes as the vector Ajy(t) =
w AR (2) s

After it is decided which fraction of jobs will be processed by destination node
.d|, they should be transferred there- this is the routing problem. For routing. we
must specify which path between source-destination pair sd| will be selected. In
addition. some jobs may be rejected outside of the network, for congestion control
reasons. So. let the fraction of rejected jobs for the source-destination pair |[sd] be
5.4 (t), and the fraction of jobs routed through path m(sd] be ¢7;,4(t) (Figure 3.1).
Since a job for the source-destination pair may only be rejected or routed through

a single path, all these fractions must sum to one. So. let define the constraint set

for the class ¢ routing and congestion control decision variables as

RC = { 05,4(t), ¢5y(t) ¥rlsd € II5y ¥ [sd] / such that

Hrlad) L

Oalt) + D Palt) =1 V[sd]

rr’:.!d]iiﬂf:‘d]

ﬂﬁi[,d]{f:‘«. ‘ﬁ;,,d](f} >0 Vrisd € (sd]? sd] }

For a more compact presentation we write the routing and congestion control
fractions of all paths between source-destination pair [sd] for class ¢ as the vector
fLa(t) = [05,4(t).. 95,4 (t) .|, of all paths for class ¢ as the vector ®°(t) =
. ®f,4(t) ...] and for all classes as the vector ®(¢) = [... 2°(¢) ...|.
Furthermore, jobs arrive at the source node [s.] and require only transfer to the
destination node [.d] (i.e. no processing), with external arrival rate ¥,,(t) = 0.

Since there is flow ~f, (¢) * ¥f,;(¢) (due to load sharing decisions) and flow 7f,4(t)



r
i

(due to communication requirements ) for the source-destination pair sd , the total
class ¢ flow for the source-destination pair |sd 1s Moat (8) = 3f,5(t) = 'L"fm-} (L

Due to the congestion control. the fraction of this flow that will be rejected 1s
o alt). So.let the rejected flow for the source-destination pair lsd| be

olad){t) = (Waa)(t) T Vo (£) *x Ui (£)) * @y (E)

5

For a more compact presentation we write the rejected flow for the source-destination
pair sd] for all classes as the vector Aya)(t) = L... A (t) ool

Another fraction %, () of this flow will be routed through path m|sd| There-
fore, the resulting flow on path w[sd] will be (Vo () + G (8) =¥l g(8)) = & a(t).

This flow will be assigned to the links and nodes that constitute this path. So. the

class ¢ flow on link {7 will be the sum of all path flows that traverse this link :

A(tE) = 3 .7 (Yo (8) + 11 () * Ui (t)) * D510a1(E) * Lijensq)(t)

:.sd]-ESDC Tisd|E H_F:’d1_
where 1,;cn(4q1(?) 1s the indicator function that link 27 is on the path w|sd]. For
a more compact presentation let us write the flow on link ¢7 for all classes as the
vector Ay;(2) = [... AL(¢)
Similarly, the class ¢ low at node ¢ will be the sum of all path flows that traverse

this node :

M) = ) Do (at) +5(8) * Ui () * O%,a1(8) * Lignlsq(t)
[sd]€SD* r[sd]eII¢

sd]

For a more compact presentation let us write the flow at node : for all classes
as the vector A;(¢) = [... A{(¢) ...] and the flow at all network nodes and links for
all classes as the vector A(t) = [... Arg)(t) ... Aopsqi(t) oo Aij(t) oo As(t) ...
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3.2 State Space Model

In this section, we describe the dynamic evolution of the system state using a
state space model for each system resource. The real system state is a stochastic
process (discrete-state continuous time). However. the decision makers cannot
have instantaneous knowledge of the global state at every instant. So, even if
we solve the stochastic problem. 1t will be difficult to implement the solution.
Therefore. we use the deterministic approximation of this stochastic process by
its expected value. We define as state of a system resource, the average work at
this resource {continuous-state continuous-time process). This work may be the
number of packets, bursts, virtual circuits etc. The average work increases during
a time interval by the average work that arrives during this time interval and
decreases by the average work that departs (having received service) during this
interval, So, if X(¢) 1s the system state, A(t) is the arrival rate and D(¢) is the

departure rate. we can write

Under specific assumptions on the network operation and the traffic distribu-
tions, the above abstract form of the state space model reduces to specific differ-
ential equations (see sections 3.4, 5.5).

We can write such differential equations for each class ¢, for each source-

destination pair sd], at each system resource. Let X¢ _,(t) be the state of the
| . sd]

o

rejected class ¢ flow for the source-destination pair [sd|. Then the following dif-
ferential vector equation describes the class ¢ rejected flow for the sd| pair over

time:

©)(t) = 15, (6, X (2), B(2), T(2))

Let X{;,q(t) be the state of the class ¢ flow at link 17 for the source-destination
sdl. Then the following differential vector equation describes the class ¢ flow at

link 7 for the [sd| pair over time:
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Let X5,,(t) be the state of the class ¢ flow at node i for the source-destination
sd|. Then the following differential vector equation describes the class ¢ flow at

node i for the [sd| pair over time:

X alt) = £, X(8), (t). ¥(t))

Let X¢ ,q(t) be the state of the class ¢ flow at destination node [.d] from the
source node |s.|. Then the following differential vector equation describes the class

¢ low at destination node [.d] originated at node s.;:

X5 greal(t) = g (8. X(8), B(2), ¥(2))

The state of the network 1s described by the state of its links, 1ts nodes, its
rejected flow and its destination processing sites. 5o, we define as the network

state the vector

X{i} == [ X:}[Jd]{t) f[sdl(t) X;[sd][t) szd]sd](tj T

and the differential vector equation that describes the dynamic network evolu-

tion

X(t) = £(¢,X(t), ®(t), T(t))

In sections 5.4, 5.5 specific versions of these equations are developed.

3.3 Multi-Objective Cost Function

In this section, we describe the multi-objective cost function for the joint load
sharing, routing and congestion control problem. First, let us make some useful
definitions:

Definition :

C'onsider the dynamaic joint load sharing, routing and congestion control prob-
lem in distributed systems with multiple classes. Define the twice continuously

differentiable (with respect to X ) vector functions
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Y (f) = he(¢t,X(t)) : state measurement (observation) of class ¢ and
Y(t) = h(t.X(t)) : global state measurement {observation).

Define the state observation structure of class ¢ as

1) perfect state observation iff Y S{£) = X{t] t = [tguty .
2) imperfect state observation sharing off  Y(t) =Y (t) # X(), t € to.tyl.
3) imperfect state observation no sharing iff Y¢(¢) # Y (t) # X(t), t € [to.ts).

Definition :

Consider the dynamaic joint load sharing, routing and congestion control problem
i distributed systems with multiple classes. Define

I¢(t) : information set of class ¢

Define the information structure of class ¢ as

1) open-loop iff I¢(t) = {Xo}, t € to.ty),
2) closed-loop iff I¢(t) =4 Y s8); ¥ s&ts:t]h t € touty),
3) memoryless iff Ity =4{Xg Y (E]} t € [to.ts],

€ [t 1],

4) feedback 1ff 15t =4 Y* (L)}, t

5) T-delayed closed-loop 1ff I°(t) ={Y(s), ¥V s € [to,t — T}, t € [to,ts],

6) r-delayed memoryless 1ff I°(t) = {Xq, Y(t — 1)}, t € [to,tsl,

M

7) r-delayed feedback ioff  I°(t) ={Y°(t — 1)}, t € [to,tg],

Let A = [... A® ...], where A¢ = {A(I(t)), Y t € [to,ts]} is the strategy of

class ¢ during the whole duration of the problem.
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Next, we consider the cost function for class ¢ at time f to be g°(¢, X(¢), Alt)).
a function of the system state and flows and the total cost function J(A) =
/” g°(t, X(t). A(t))dt. We can decompose this cost as the sum of its average
c::.?st . 1)at every link 13, gf;(¢, X(£), A(¢)) (e.g. transmission and propagation

.
cost) and JS(A) = f : gfj(_t,X{f),ﬂ(t}]dt: 1) at every node 1, gf(t.X(t). A(t))
] i

ty .
e.g. processing cost) and JF(A) = gs(t, X(t), A(t)); 111) at every source-
to

destination pair [sd/. gfuq (t-X(t), A(t)) (e.g. cost for rejecting jobs) and J{ ;(A) =
t

f f gf,g(t. X (t), A(t))dt: and iv) at every destination node [.d], gf g (8 X(2), A(t))
to = F :

(e.g. cost for processing jobs) and ch] f g d| (t. X(t), A(t))dt. Note that
in the above general form of the cost fun-::tmn the cost at each link or node may
depend on the traffic over the whole network, e.g. in packet radio networks, the
delay on a radio link depends not only on the traffic on this radio link, but also on
the traffic in other interfering radio links from neighboring nodes.

So. the cost function for class ¢ at time ¢ 1s

gt X(t), A(t)) = ngj(t,xm,gx(t}) + D gl X(t), At)) +

+ 2 gt X() Zg ), A{t))

ad]

The objective function during the whole duration of the problem, from the

initial time £y to the final time ¢4, becomes



Ey

JS(A) = g (t. X (), A(t))dt =

J tg

=i TE _ ty

= \_./Igfh,{ﬁ-X{fLMt)}df + ¥ Ig;{ti}{{t).ﬁ{t}]dt 4
1] ot 1 . Ytg
: ¢

“ E/fg[id:{f.X{iLﬂf_ﬂ}dﬁ -+ : Ig[ﬁ_d:{t,lx_{t)?ﬁ{f}]df
[sd] * "0 [ d] Lo

For the infinite horizon problem. we consider the following cost function

FA) = S/t e~ igr(t. X(t), A(t))dt + EL e~ gt (e, X(t), At))dt —+
1] 0 1

+ _Zt e Cledl gf (£ X(2), At))dt  + ZC”/W e T gE (2. X (), Alt))dt
2d) 77 '

where ¢;;, ¢,, Cj,4]. € 4 are discount costs.

For networks where the cost of each resource depends only on the traffic on

this resource. the cost function for class ¢ at time ¢t becomes

g(t, X(8), A(2)) = D g5(8,X(8), Ay5(8)) + Do gi(8.X(¢8), Ai(t)) +
1jeLic e N<

- Z Q:Fad](tiX(t}*Ao[adl(t)] T Z gfd](tix(t}’ﬁ[d]{t})

[sd]eSD" Ld]eDs .

and the objective function during the whole duration of the problem, from the

initial time ¢y to the final time ¢4, becomes



¢

JA) = 5 [ gr (e X(e). Ay(t))dt + ‘T‘f ge (6 X () Ayl t))dt —

U"EL: fo =V
tf _ ‘1 . i L
) (s X(t), Agaay(t))dt + > gf (8. X(8), Apg(t))dt
(sdeSD< /10 .dleDg, | 7

[a.]

and for the infinite horizon problem, the cost function becomes

0 s
J(A) = Z/ e~ gt (. X(t), Ayj(t))dt  + }:/ e CitgS (8. X(t), As(t))dt —+
iy

11 Lie 1eNce
T emcotgs o (6 X() Agpgg(D)dt + 3 f et g (£, X (1), Ay g(t))at
sd £SD* to | cf].::[}f

The cost function for class ¢ may also be written as a function J(®,¥) =
L

g°(t. X(t), ®(t), ®(t))dt of the routing, congestion control and load sharing

tn
fractions on the path flow space, where the strategies of each class ¢ during the

whole duration of the game are

(@, %) = {((T(2)), T(L(2))), Y EE [tostsl}, Vo

and for all classes
(B3} = [iesy [P WFY, ]

Throughout this dissertation, all arrival rates and cost functions are considered
to be nonnegative. Also, the feasibility set is considered to be nonempty.

In the next chapters, we formulate and solve the joint load sharing, routing and
congestion control problem as a Pareto, Nash and Stackelberg game. For each case,
we further give three alternative formulations, namely nonlinear programming,
nonlinear complementarity and variational inequality problem formulation.

In the optimization problem, we shall use the Hamiltonian and Lagrangian

functions, which we define next:



Define the Hamiltonian for each class ¢ as

H(t, X, 2, ¥.P°)=¢(t.X. &, ¥)+- P xf(t.X. P ¥)

Y c | .k e .k e,k ¢,k 1 -
where P = ... Piry oo Poiy oo Phig oo Pli,a | @ vector of class ¢ costate

variables.
Define also the derivatives of H® with respect to the congestion. routing and

load sharing fractions at (¢, X*(t). ®*(f). ¥*(t), P°(t)) as

OH** dH(t. X, . ¥.P°)
= e (t), Bo(t) . T*(t),Pe(t))

Dofsd] PDofsd]
OHc<* JH(t.X.®. ¥, Pc)

c — e |4_tJ{'it].-@‘{f}.*I"[tJ.Pc{r}}
(I}‘.Tf:sd] - r_aup

adH® e, X 9.9, P

c

L ot
“lsd] lsd]

1

(6.5 (¢). 8% (¢), T (£).Pe(e))

Define also the Lagrangian for each class ¢ as

Lé(t,X,®, ¥, P°.Q°) = Hé(t.X,®,¥,P°)+

N Z Qf&d, #ofd = Z{.sd] — Z E}fra:i' +

[sd|=SD° misd|E H[:z.dj

+ 2 Q|- 2 Yy

s.]ESS Zj.d]EDE:._]

where Q° = [... Qf,4 ... @f, ---] : vector of class ¢ multipliers for the constraints

of the congestion control, routing and load sharing fractions.
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Define also the derivatives of L° with respect to the congestion. routing and

load sharing fractions at (t,X*(¢),®*(¢). ¥*(t).P(t)) as

oL GL(t.X.®..P°.Q°)
Le = - e X=(t), @), Fe i), Peie),Qete))
G L'I:..Sd‘: D[sd
AL AL(t.X. &, ¥.P°,Q°)

= (8, X=(t),P(t), T~{t),Pc(t),Qc{t))
gfr:.sd; d}‘:ﬂsd]
5L SL°(t.X. &, ¥, P. Q%)
L = e (e X(e), B (e), T (), Pe(e),Qe(e))
“lad) “lsd)

3.4 State Constraints

In this section, we describe constraints on the values that the system state (e.g.
number of virtual circuits, number of packets) may take. One such constraint is

the non-negativity of the state

X(t) >0

For flow control as well as implementation reasons, there may be restrictions

on the network state

W(X(t)) <0

For example. the expected number of packets at each link should be less than
a window size for this link.

We may also have a set of initial constraints, e.g. I(X(ty)) < 0 for the initial
network state X(¢p), and a set of final constraints F(X(t;)) < 0 for the final
network state X(t¢). For example, the expected number of packets at the final
time should be zero.

[n the next chapters, we shall further describe particular constraints on the
state for different kinds of networks. Note, that 1f we consider state constraints in

our optimization problem, then the Lagrangian should be suitably modified.



Chapter 4

Quasi-Static Formulation

[n this chapter, we develop three novel methodologies for the quasi-static problem:
1) in the team optimization methodology, the classes of jobs cooperate in using the
resources of the system for the socially optimum,11) in the Nash game methodology,
the classes of jobs compete among themselves and each class tries to operate opti-
mally for its own jobs, and 111) in the Stackelberg game methodology, some classes
of jobs have more power than others, for example priorities. For each methodology,
we develop three alternative formulations of the joint problem, namely a nonlinear
programming, a nonlinear complementarity problem and a variational inequality
formulation. For each formulation, we state the necessary and sufficient conditions
for existence and uniqueness of the solution. From the Karush-Kuhn-Tucker con-
ditions. we also derive the abstract form of the solution, that there should be flow
only on minimum length paths, to minimum length destinations, The length at
each system resource is appropriately defined for each case. Then we apply these
three methodologies to datagram, virtual circuit and integrated services networks.
For each of these networks, we introduce cost functions for multiple classes and
for priority classes of jobs. We also explicitly solve three examples: 1) In the first
example, two classes of jobs share two processors. The objectives are the minimize
the expected job delays. We give in closed form the policies that achieve the team
optimum solution and the Nash equilibrium solution and we further investigate

them numerically, 1) In the second example, two preemptive priority classes ot
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jobs share two processors. The ohjectives are to minimize the expected job de-
lays. We give in closed form the policy that achieves the Stackelberg equilibrium
solution and we further investigate it numerically. iii) In the third example. two
classes of jobs share two servers. Packets from the first class may be queued wait-
ing service in front of server, while packets from the other class are dropped when
there are more than a threshold jobs into the system. Then, the first class wants to
minimize its expected delay, while the other class wants to minimize its blocking
probability. We find the policy that achieves the Nash equilibrium solution and

we further investigate it numerically.

4.1 Team Optimal Solution

In this section, we formulate the joint load sharing, routing and congestion control
problem in distributed systems as a Pareto game among cooperative classes.

Customers of different classes cooperate in using the resources of the distributed
system for the social welfare. The behavior of each class is similar to that of any
other class, 1.e. to operate optimally for the average job. Stadler [458] and Dauer
& Stadler [123] survey research on vector optimization.

Next, we give the definition for a Pareto optimal solution [27], for the joint load
sharing, routing and congestion control problem on the path flows.

Definition:

A vector (@*. ¥*) € (RC,LS) 1s called a Pareto optimal solution for a C'-class

jownt load sharing, routing and congestion control problem if and only if there ezists
no other vector (®,¥) € (RC,LS) such that
J(e,¥) < J(e*,¥*) VYV (@,¥)ec (RC.LS)

with strict inequality holding for at least one class c.

Define a global cost function

{

l/p

J(®,¥) = |} w = [J(2,¥)F



&
where l<p<o, > w'=1 u*>0 Ye

c=1
For p — o, we have a nunumaz problem [122], since the cost function becomes

S ) = mca}:{u"’: «J(P,T)}

Another problem formulation is

such that
ur“*f{@,‘l'}if Y ¢

Furthermore, another problem formulation is

min J(®,¥)
i R

such that
JN(®, W) < JU(P.¥) Ve

where J¢ is the maximum acceptable value for the cost function J¢.

Next, we give the definition for a team optimal solution [27], for the joint load
sharing, routing and congestion control problem on the path flows.

Definition:

A vector (®*,%¥*) € (RC,LS) s called a team-optimal solution for a C'-class

jount load sharing, routing and congestion control problem if and only 1f

J(@*,¥*) < J(e,¥) V(e,¥)c(RC,LS)

In the next sections, we develop three alternative formulations for the team

optimization problem.
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4.1.1 Nonlinear Programming Formulation

In this section, we formulate the cooperative load sharing, routing and conges-
tion control problem as a Nonlinear Programmming Problem (NPP). Algorithms for
solving NPPs 1s a thoroughly investigated research area and popular algorithms
may be found in books by Fiacco & McCormick [152] Zangwill (529 , Murray 339
Gill & Murray (192, Bazara & Shetty 30|, Fletcher [164, 165], Luenberger [311].
Bertsekas & Tsitsiklis [46] among others.

Theorem :

C'onsider the quasi-static joint load sharing, routing and congestion control
problem in distributed systems with multiple cooperative classes.
(®*,¥*) = (RC,LS) is a team-optimal solution 1f and only if it solves the following

Nonlinear Programming Problem:

minimize J( P, ¥)

with respect to (P, W)

such that (¢, ¥) < (RC,LS)

Proof: It follows from the definition of a team optimal solution.

Theorem :

('onsider the gquasi-static joint load sharing, routing and congestion control
problem in distributed systems with multiple cooperative classes.
If J s differentiable and conver in (®,¥) € (RC,LS),
then (®*,¥*) € (RC,LS) s a team-optimal solution if and only if it satisfies the

Karush-Kuhn-Tucker conditions:

H3



aJ(®*. ¥*)

Pyt it Y (G
— Qfg| * 05,4 =0 v |sd] € SD°, ¢

a¢;[sd::
0J(B. T e o
E_{:?@ﬂ_. " } - Qid] * Qrig =0 ¥ Tisd] € IIf, 4, sd] € SD", ¢
GJ(®. W) . y . c
L — Qa] * w[3&1 = ki |I’i] & D[S.. lS] = S « C
sd) _
aJ( e, ¥’ |
(r ) — Qg 20 v [sd] € SDF, ¢
G]m;[aa’
aJ(e*, v :
é@c ' | - Qfea) = 0 v wlsd] € 1If, 4 sd] € SD°, ¢
P [ad
aJ(e*. P ;
anc' ) _ Q120 v [.d] € Df, ), [s.] € 8% c
Y d
g + D, hg=1 ¥ [sd] € SD°, ¢
T"d]Enf;d]
Z H!%::d] = kvi [S ] - Sc, C
dleDs,,
i s | V wlsd] € IIf, 4, [sd] € SD?, ¢
Uiy 2 0 v [.d] € D¢, [s.] € 8¢, ¢

Proof: The Lagrangian is

L=J+) > Qq*|1=¢ng— D il +

¢ [sd]eSD" w|sd]E IIE:M:II




YT @ f1- Ty

c |.5 ES"‘ ::."’_D_ I

"With {i}g ] ﬁécud], L _!ﬂ] ::' U o -Ed - Hc d] Stf' = SDE ¢
The global cost function J 1s convex in (&, ¥) £ (RC.LS). so the Karush-

Kuhn-Tucker necessary conditions are also sufficient:

m’

SL(®°.¥".Q) . E ek TR
000 o =0 = 00,0 Qfea] * 95aa) = 0
v [sd| € SD°,
AL(&*. . Q) 5J(®*, @)
e oo B e - -
afﬂijd (ﬂﬂ'[gd] | 6@_,. - Q sd]l 11' .-ui
v wlsd] € [d sd] € SD¢, ¢
SL(®*. T*.Q)

.ﬁJ(@* !
31.{{:3&* R : fhﬁ sd]
v d?ED , |s.] € 8%, ¢

— QE!.]] ¥ ﬁ‘f:d] =0

OL(®*, T~ aJ( e, ¢*
@.9.Q) _ WEE) o
3{1};[5&] amﬂmd] L

v [sd] € SD*, ¢

SL(®*,T*.Q) 5J(®*. T*)
. >0 = — Qg =0
O 10a) 005 (4] “ld
V wlsd] € IIf, ;;, [sd] € SD°, ¢
AL(®*, ¥*. Q) o B i dJ(®*, ¥*) _ 0
Mty e, o1 2

v [d] € Df5 8. € 8% ¢
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BL(®*. T*. Q)

- >0 = Oy + X, Ong =1 VY[sdeSD",
ﬂq[-’d] :rr[scf]EH:::!d!
OL(®*, P*,
{ 50 Q}:{] = Z :__.-jlf::d]_l v is.] € 8¢, ¢
<s ldleDs,,
d};sd] I'r‘?‘l}t*:r“[m_*i] E 0 v T;[Sd] c 11 [sd]'-' [Sd] y C
L[Jd] :} 0 7 !'+d] & DE, 5. & SC. &

Theorem :
('onsider the quasi-static joint load sharing, routing and congestion control
problem in distributed systems with multiple cooperative classes.

If J 1s differentiable and conver in (®,¥) € (RC,LS),
then (®*, ¥*) € (RC,LS) s a team-optimal solution 1f and only if

congestion control

aJ(e*, v*) & aJj(e*, ¥*)
8¢;ﬂ[ad| B ad}wlad‘

ofsd) = 0 0.W.

O5hg > 0 only of

r[sd] € IIf,y), [sd] € SD*, ¢
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routing

cw : 8-}[@'.111.} . E:’i'-}{@.tq?.:l . frjjf'ill“ll.}
Orisd] = 0 only ¢ f — inin

. 111111
iy 16 ' r 1 i C

hoe¥® - '
O iea) = U o.W.

V wlsd] € IIf,,, [sd] € SD°, ¢

load sharing

dJ(e*, ¥*) P aJ(®*. &)
0,4 . @d}i "

Wicy > 0 only 1f

jex  — :
Wity = 0 0.W.

V¥ [sd'], [sd] € SD¢, ¢

* [ ok At 1 (s
ri};{m’] & Z {I}#[sd] =1 V¥ [SdJI e 5D ¢
rriaﬂ'_r!EHFld-j
Z Uiy = 1 V [s.] € 8% ¢
dleDs¢ '

[o.]

Proof: These conditions follow directly from the Karush-Kuhn-Tucker condi-

tions. 0.

Theorem : eristence

Consider the quasi-static joint load sharing, routing and congestion control

problem in distributed systems with multiple cooperative classes.

If J 1s continuously differentiable in (®, W) and conver in (®,¥) € (RC.LS),

then there exists a team-optimal solution.

62



Proof: The constraint sets Bolsd] T Z Oriad] = 1o Ogfeapy Preq) 20 ¥ Tisd €

wlad l?.'E].-I'=':I
[ad]
I,y [sd] € SD%, cand ) iy =1 ¢fg 20 V¥ [d €Dj [s. €5 c
[&'-iED'h'

define a convex, closed and bounded set.
The cost function J is jointly continuous in all its arguments and strictly convex

n(® ¥)ec (RC,LS). Therefore, there exists a team-optimal solution.C

Theorem : uniqueness

C'onsider the quasi-static join load sharing, routing and congestion control prob-
lern 1n distributed systems with multiple cooperative classes. If J 1s twice
continuously differentiable with respect to A € K and strictly conver in A € K,

then there exists a unique team optimum solution on the link flow space.

Proof: The constraint sets Af + Z Ai; = 1, Aigy Ay 20 Vg
17€0°¢
define a convex, closed and bounded set. The cost function J is twice continuously

differentiable with respect to A € K and strictly convex in A € K. Then there

R

0¢ Vi,

exists a unique team optimum solution on the link flow space. O

4.1.2 Nonlinear Complementarity Problem Formulation

In this section, we formulate the cooperative joint load sharing, routing and con-
gestion control problem in distributed systems as a Nonlinear Complementarity
Problem (NCP).

Karamardian (244, 245, 243] proves existence and uniqueness for a nonlinear
complementarity problem. He also shows [246] the equivalence between a gene-
ralized complementarity problem and a variational inequality problem. For
transportation networks, Aashtiani & Magnanti 1] formulate the traffic assignment
problem as a nonlinear complementarity problem.

Define the vector Z of class congestion control, routing and load sharing frac-

tions and Lagrange multipliers
c c c T
Z = [ 5] o Bopad] v Q) +orr Do) - Qs o]
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Define the vector of class derivatives of the Lagrangian with respect to the

congestion control, routing and load sharing fractions and Lagrange multipliers:

| a8 B e
T.E(Zj — { ({"]g’:. o Qa[sﬂ']) ((5&‘:- a QT"EJ'-'”)

niad] ! ?r'i.:d]

Theorem :

C'onsider the quasi-static jownt load sharing, routing and congestion control
problem in distributed systems with multiple cooperative classes.

If J s differentiable and convezr in (®,¥) € (RC,LS),

then (®*,¥*) € (RC,LS) is a team-optimal solution if and only if it solves the

following Nonlinear Complementarity Problem:

VIL(Z*)+Z* = 0
VL(Z*) >0
Z* >0

Proof: After some algebraic manipulations, we find that the NCP: VL(Z)+Z =
0; VL(Z)>0; Z >0 with Z and VL(Z) as defined above, is equivalent to the

Karush-Kuhn-Tucker necessary and sufficient conditions. O

—_—

Theorem : ezistence

Consider the quasi-static joint load sharing, routing and congestion control
problem in distributed systems with multiple cooperative classes.
[f VL(Z) 1s differentiable in (RC,LS)

and its Jacobian matriz 1s strongly copositive in (RC,LS),

then there ezists a team-optimal solution.
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Proof: It is known [243], that the nonlinear complementarity problem = f(r) =
0: f(z) > 0: z > 0 has a solution if f is differentiable in E7 and its Jacobian

—

matrix is strongly copositive in £7. O

Theorem : uniqueness

Clonsider the quasi-static join load sharing, routing and congestion control prob-
lem n distributed systems with multiple cooperative classes.

If the gradient vector of the Lagrangian (on the link flow space) with respect
to the link, node, computer site and rejected flows, as well as the corresponding
Lagrange multipliers is continuous and strongly monotone on the space where these
flows are defined,

then there exists a unique team optimal solution on the link flow space.

Proof: It is known [244], that if f : ET — E" is continuous and strongly
monotone on E7, then there exists a unique & € E™ such that z > 0; f(z) 2

0; Tflz) =1, B

4.1.3 Variational Inequality Formulation

In this section. we formulate the cooperative load sharing, routing and congestion
control problem as a Variational Inequality Problem (VIP).

The theory of VIPs has been advanced a lot since the important work of Lions &
Stampacchia [305], who prove existence and uniqueness for a variational inequalty
problem. Kinderlehrer & Stampacchia [253] present a thorough study of VIPs.
Hlavacek, Haslinger, Necas & Lovisek [217] and Glowinski, Lions & Tremolieres
198] present algorithms for the solution of VIPs. Cottle, Giannessi & Lions [113]
discuss the equivalence between NCP and VIP. For the traffic assignment problem
in transportation networks, Dafermos [118] observes that the network equilibrium
condition as reformulated by Smith [452] has the form of a variational inequality.
She also [119] introduces an iterative scheme for the numerical solution of finite

dimension variational inequalities.
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Define the vector of class congestion control. routing and load sharing fractions:

r 74
( - ¢ S|
(8,0) = [ &g o g o Vg o

Define the vector of class derivatives of the cost function with respect to the

congestion control, routing and load sharing fractions:

0J 8J 5J
VIR = |.gE—.. X g
! E:I:'u[ad] ?T[Ed]f:_]:[;:’d] d@wzsﬂ,] 81'.'{51_1]

Theorem :

C'onsider the quasi-static joint load sharing, routing and congestion control
problem in distrmbuted systems unth multiple cooperative classes.

If J 1s continuously differentiable and conver in (®,¥) € (RC,LS),

then (®*, W*) € (RC,LS) 15 a team-optimal solution if and only if it solves the

followwng Variational Inequality Problem.:

V(@' " )= (. ¥)— (2°.F7)) >0 7 (®,¥) < (RC,LS)

Proof: If (®°*, ¥**) is a local minimum for the following minimization problem

minimize J( P, P)

with respect to (®,¥)

such that (®,¥) < (RC,LS)

and J 1s a continuously differentiable convex function over the nonempty con-
vex, closed and bounded set (RC,LS), then
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oJ(®*. w*) -
Y, 2, { , *(Dgisd) — Pojsd]) T

¢ [sd]eSD* o/ sd]
aJ(®*. ¥*)
+ > ‘ # (@S, — OoT,a)) +
- oy | sd m|ad]
dﬂjfr[ad] B

wisd|E HF;&'

’i'*.q’t
B Sjt.ﬁ. )*{ﬂ,;ﬁ]_ﬁyg;d]} >0 VYV (®,¥)c(RC.LS)
dﬂrf&d] ' -

O

Another equivalent VIP formulation is the following Theorem:

Theorem :

C'onsider the quasi-static joint load sharing, routing and congestion control
problem n distributed systems with multiple cooperative classes.

[f J 1s continuously differentiable and conver in (€, ¥) € (RC,LS),

then (®*,¥*) € (RC,LS) s a team-optimal solution if and only if it solves the

following Varational Inequality Problem:

VI(Z)*(Z -2 )>0 YZ>0

Proof: Karamardian shows, that the NCP: f(z*)*z* =0; f(z*)>0; 2" >0
and the VIP: find z* such that f(z*)*x(z —2z*) >0 vz > 0

are equivalent.C

Theorem : eristence

Consider the quasi-static joint load sharing, routing and congestion control

problem wn distributed systems with multiple cooperative classes.
[fVJ(®,¥) is continuous on (RC,LS) and bounded,

then there erists a team-optimal solution.

Proof: For a VIP: find z* such that f(z")x(z —2z*) 2 0 Yz € K, if f is

continuous on A, then there exists a =* that solves VIP. O



Theorem : uniqueness

C'onsider the quasi-static join load sharing. routing and congestion control prob-
lem in distributed systems unth multiple cooperative classes.
[f the gradient vector Y J(A) of the cost function with respect to the link, node,
computer site and rejected flows 1s continuous and strictly monotone,

then there erists a unique team optimal solution on the link flow space.

Proof: It is known that for the VIP:
find z* such that f(z*)*x(z —2*) >0 Yr € A

if f 1s continuous and strictly monotone, then there exists a solution. O
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4.1.4 K-K-T for Separable Cost Function

In this section, we derive the first order necessary and sufhicient conditions for a

team-optimal solution on the path flows, when the cost function of each resource

depends only on the low on this resource and is convex with respect to that flow.

MINIILZE

J(®,0)

with respect to

such that

= 3 el N Koseen XG) #

Fdle=
1)

B e X XE) =

+ 2 Ja(Ag

olad]? =2
sd]
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The Karush-Kuhn-Tucker necessary and sufficient conditions are:

-
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]| 27 W) Q| * 05 0 V |sd] € SD° ¢
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The partial derivatives of the cost function J(®,W¥) with respect to the path

fractions @7, can be written with respect to the link Hows A{; and node flows A¢:

0J:;(B.®) _ 8Jiy(Ay) 0N
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Then the Karush-Kuhn-Tucker conditions become:
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Next, for each class c. we define the length for the rejected flow [sd|. the length

for the path r|sd| and the length for the source-destination pair [sd :

c.team SJG-:sd](An{sd]) - n fe
{’G!rsd] 9)\¢ — * | ’:"[.sd: T ] =
- L olad] l |

[l

fc._.teqm T @J-,.-_;-'.r_iﬁ.“l} o o€ w ahE ) % 1.: : 1
red] = 2 T aye * sd) T Vo) * ¥eg) * Liseniaa]
t] i)

a'—}‘:(ﬁf } c . 5 "
+ A e~ sl T o) * W) = Lienlad

E;:;;ti?am == E Z )¢ * TE!-] * E};Jd' - ]‘?'.?Eﬂ'[s'i] k)
misd] 1J t
aJ:'fﬁ-t
+ 3 X t 2 - Vo) * Prlad) * Lien(sa) +
— = G X :

mwlad] 1 A

OJpsa( Afsa)) 0Ji.a(Ara)
§ LR g gt g b L g

a')"g-l_sd] s : *d 8)\?‘1 ke

External arriving flow at a source is assigned to the destination that has the

minimum length from the source. However, this flow may be rejected if the length

of rejecting 1t 1s less than the lengths of the paths to i1ts destination.

accepted, then it is routed to its destination via the minimum length path.

I at 18

In the next section, we will derive the same conditions by an alternative way,

and we shall state the above ideas more formally.



4.1.5 V.I. for Separable Cost Functions

Equivalently, class ¢ minimizes the global cost function J with respect to its load

sharing, routing, and congestion control fractions:

NN E

J(®.¥) = N L g AT )

with respect to @

such that Dotad] T+ E Orisa) =1 7 [sd] € SD7, ¢
Tiad}EHF;di

. C LC Py = | 1 |am C
{I}G[sd]} {;i}ﬂ'[sd] E O v W[Sd] A= [sd]® LSdJ — SD y G

The necessary and sufficient optimality conditions are [311]
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We can decompose these conditions for each class ¢, for each source-destination

pair [sd] € SD°

EFJ{@"lIF"} - - (?J(‘i" ‘I’*] . » | | o C
Ad¢ *(@u[sd’}—ma[sd]} T Z 30° *{ber[sd]_cb?riad] | > 0 vo°c RC

01 ad| w|sd]E Hf:;d] P r{ad]

o , [ Cw .
olad] T Z m”[Sd] =
n‘[sd]EH:}"d}

* R, 4 : [ c
ﬂP;in}.} & > () v ?T[Sd] S Hi:d]

mlsd| =

Therefore, there must be flow only on paths where the first derivative of the cost

function J(®*, ¥*) with respect to the path routing fractions o7;,, is minimum

3J(®*.¥*) _ 8J(2, )

8% >0 only if

0054 0954
JJ(®*,¥*)  JJ(P*,P*)
and = £ -
O (sa 0D 4a)
7 ;L[-Sdl: ?":- W[Sd; ;L'L-S-d] = Tsd.]" Tﬁd] &= f.sn:f:i’ 2

Also, flow 1s not admitted into the network only if the first derivative of the

cost function J(®*, ¥*) with respect to the rejection fraction ¢g,, 1s minimum:

3J{‘I"1‘I"}{3J{@*,‘P‘}
00y 0%

;E”ﬂ o> O Dﬂ.iy 'E.f v k[Sd] - H:f.s‘f



Theorem : Routing

There must be flow only on minunum length paths:

’ c,leamm= s C,Learm» e fearm s
g >0 only of 10T =min{l }mn{fwd] F}

?T|_.5

s .
Orisd] = =0 o,

v wlsd] € IIf,,;, [sd] € SD°, ¢

Theorem : (ongestion Control

Flow 1s not admatted into the network only if its rejection length s less than

the minimum length path to its destination:

. ¥ p
Ol > 0 only o f ;ij;m = r11111{i',';l fﬁm*_ 1 {Z"'" mm'}}

et — ;
E}ﬂ{su’: =1 ..

o S % — r 1 ~ €
mf3‘l~‘“ﬁi' — cﬁ‘ﬂ'[sd] =1V [Sdf € SD%, ¢



Having found the optimum routing and congestion control decisions. we proceed
to solve the load sharing problem for class ¢ assuming that all other classes act at

their optimum decisions. So. the load sharing problem for class ¢ is

minimize
J(®*.®) = ¥ i s Boen X2 T4
t]
T I T T e v
i E J"ﬂr](’}‘ﬂfsd """ ;[acr.']'-' Aglad) *
[sd]

d]
with respect to WP
such that Y. dra=1 V[s]€S, ¢
[.d]ED[,_:

Ve 20 Y [deDg,, [s] €S ¢

[s.]?

The necessary and sufficient optimality conditions are:

: . JJ(P*, P .
t}_, > ‘ Ef} e ) % (ucad] N ﬂjf:ﬁ]) >0 v ¥ e LS°
¢ [sd]eSD" ¥lad] ' |
such that
E ?;"'E::d] = V [s.] € S¢. ¢
dleDy,

Uy 20 V[deDy, [s]es, o
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We can decompose these conditions for each class ¢, for each source node |s. =
SC‘

¥y >0 Y [.d €D,

Therefore, there must be flow only for source-destination pairs for which the
first derivative of the cost function J(®*, ¥*) with respect to the destination load
sharing fractions ¥'f,, 1s minimum:

aJ(®*, ¥*) 2 oJ(@*, )

Uis >0 only L f e
" [ad]

vid]#Ld, [d)[deDyy

[P
[aw?ddr]

Theorem : Load Sharing

For each source, there must be flow only to destinations whose length s mini-

TRUITL.
gy L - c.teams= L ' c.tearms
Y [ad] = D Dnjy If E[ad1 — ];Tll;l{fde }
[sd’] 77
f,C* —— ;
L-Iil!.d.'j p— ﬂ-u' i

Y. i =1V[deDf,, [s]e8 ¢

8.
d]eS¢E |
*

Thus, in this section we have formulated and solved the load sharing, routing
and congestion control problem as a team problem among multiple cooperative

classes.
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4.2 Nash Equilibrium Solution

In this section. we formulate the joint load sharing. routing and congestion control
problem on the path flow space as a non-cooperative Nash game among competing
classes.

Cus=*omers of each class try to use the resources of the distributed svstem for
their own benefit, ignoring the inconvenience that they cause to customers from
other classes. Since the behavior of each class 1s sumilar to that of any other class,
i.e. to operate optimally for its customers, next we consider customers only from
class ¢, and the effect of customers from other classes on them. When the classes
are in equilibrium, no class can improve its cost by altering its decision unilaterally.

The study of n-person non-cooperative games was initiated by von Neumann
& Morgenstern [504] and Nash (348, 347]. The underline ideas are based on fixed
point theorems 486, 66|. Subsequently, many books have appeared by Luce &
Raiffa [310], Wuirk & Saposnik [391]. Rapoport [396], Arrow & Hahn [11], Shubik
443, 444, 445], Okuguchi [361], Friedman [174], Aubin 16|, Ponssard |385], Krass
& Hammoudeh [266], Owen [369], Kaplan [242], Moulin 336], Harsanyi & Selten
213], Jianhua [236], Aliprantis, Brown & Burkinshaw 9], Aumann [17], Guth &
Kalkofen 204|, among others.

Next, we also briefly survey research papers on static Nash game theory:

Rosen [403] proves existence and uniqueness of an equilibrium point for con-
strained Nash games with nonempty, compact and convex common strategy set
and concavity assumptions on their utility functions. then he shows asymptotic
stability and uses a gradient method to find the equilibrium point. Karamardian
245| uses the theory of nonlinear complementarity problems to prove existence
and uniqueness of the Nash equilibrium.

Williams [512] derives conditions for stability of Nash games, Wilson 514
provides an algorithm for finding the Nash equilibrium. Rosenmuller 405| shows

that for nondegenerated Nash games there exists an odd number of equilibrium

points. He then provides an algorithm for computing these points.
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Luenberger [312] uses [, quasicontraction for sufficiency. uniqueness and sta-
bility of the Nash equilibrium. Gabay & Moulin 175] provide alternative sufficient
conditions for the existence. uniqueness and stability of the Nash equilibrium.
Szidarovszky and Yakowitz 474 prove existence and uniqueness of the Cournot
equilibrium. Kreps 267 provides a necessary and sufficient condition for a given
completely mixed strategy n-tuple to be the unique point of some finite n-person
Nash games. Tesfatsion [480] establishes existence for a class of Nash games with
possibly nonacyclic strategies.

Tu & Papavassilopoulos [500, 499] study the two-player linear-quadratic Gaus-
sian Nash and Stackelberg games under explicit control sharing, implicit control
sharing and static information. If one player acquires more information. then
this extra information 1s beneficial to him, provided that it is orthogonal to both
playver's information. They also prove a similar results for the dvnamic case, where
the strategies are linear functions of the current estimates of the state.

Cohen [110] discusses several variational formulations of the Nash equilibrium
problem and examines several algorithms. Li & Basar [302] obtain conditions for
existence, uniqueness and stability of Nash equilibrium solutions. They also pro-
pose an iterative distributed algorithm. Chenault |98 provides alternative condi-
tions for uniqueness of the Nash equilibrium.

In the following, we shall develop a methodology for the joint quasi-static load

sharing, routing and congestion control problem based on the Nash game theory.
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Next., we give the definition for a Nash equilibrium (27|, for the joint load
sharing, routing and congestion control problem on the path flows.

Definition:
4 vector (®*.¥*) € (RC.LS) is called a Nash equilibrium for a ("-class joint

load sharing, routing and congestion control problem if and only f

o B B , i Bl B PO
J ) < inf J }l
II"I*......‘I’C‘......‘I'C‘ ‘i’i ﬁRcl ‘I”l..,.,‘I’C*,“H‘I’Ct
¥! c LS
"*...._ti'“‘,....-@’:' , 5 @“,...JI’“..,.JI'C’ |
J¢(¢ ] = inf  J( )
Ll P PO i Jls ... Pc .. B
Fc c LS°
c @1‘....,@“.....@"?‘ _ c @1‘,...,@"“',...,@‘3
J[ 1 * C = } E inf J { 1= * C ]I
| b | T A 4 &C ¢ RCC WA e W i
¥C c LSC

In the next sections, we develop three alternative formulations for the Nash game

problem.

4.2.1 Nonlinear Programming Problem

In this section, we formulate the non-cooperative load sharing, routing and con-
gestion control problem as a Nonlinear Programming Problem (NPP). Algorithms
for solving Nash equilibrium problems are traditional iterative algorithms that use
first and possibly second derivatives. According to the iteration scheme, they also
can be classified as Gauss-Seidel, Successive Overrelaxation and Jacobi iteration
algorithms. Ortega & Rheinboldt [368], Rosenmuller [405], Wilson [512], Scarf
429], Luenberger [312], Gabay & Moulin [175], Li & Basar [302], Cohen [110]

among others describe such iterative algorithms.
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Theorem :

C'onsider the quasi-static joint load sharing. routing and congestion control
problem in distributed systems with multiple competing classes.

(®*. ¥*) = (RC,LS) s a Nash equiltbrium 1f and only if 1t solves the following

Nonlinear Programming Problem:

Ve

mintmize J( @ Wit P W, PO T
with respect to (. P°)

such that (P, ¥} £ (RC.LS")

Proof: It follows directly from the definition of the Nash equilibrium.C

Theorem :

('onsider the gquasi-static joint load sharing, routing and congestion control
problem in distributed systems with multiple competing classes. If for each class c,
J¢ 15 differentiable and conver in (®°,¥¢) € (RC.LS°). for each fired value of
(@ W, ... Pt Pt Pt Perl | PC PU)

e (R, LEY,.... RETX LS, RO, L™, ... RCF, IS,
then (®*. ¥*) = (RC.LS) s a Nash equilibrium if and only if 1t satisfies the

Karush-Kuhn-Tucker conditions:

aJE[@*" ‘If.:l C L% f c
00y Qfva| * $ohay =0 V¥ [sd] € SD*, ¢

ﬁJJ(I‘: T o Q'-’d] * {ﬁll:fad! =0 ¥ F[Sd. & HF.n:f]? [Sd: = SDE,{:
dm‘w[sd] ) R s
(P P+ ]

ﬁJ(I )_Q'f,:, «Yfn =0 V¥ [d] eDfy, [s] €8 ¢

| 9V Y




- Qfn =20 Visd] € SD°, ¢

- Qfq 20 V nlsd] € IIf,,, [sd] € SDF, ¢

co T S 5 _— 5
fﬁﬂ"—: _ *JJ — [md — D[J]. [‘S'J = S . O
|sd!

Oty + D, i =1 V[sd €SD, c
r%sdeHr’d]

Z I’f'lf.:d] =l v IS ED5 ¢
[.a’]EDf,_]
B D55y 2 0 v n[sd) € TIf,, [sd] € SDF,
Yig = 0 v [.d] € D¢, [s.] €S, ¢

Proof: The Lagrangian for each class ¢ is

i B

L=J+ ) Qha*|1-0g— 2 Saa|t 2 Qi

(sd|eSDF mlsdjeIls 5. |ESc

with o° d]* -I:r[sd]'!f ﬁfsd] 2 0 V ‘?F[.Sd] - I—'[fad]j [Sd] k= SDE, 4

o|s




The cost function for each class ¢, J¢. is convex in (®°. ¥°) € (RC, LS")

the Karush-Kuhn-Tucker necessary conditions are also sufficient:

aLe(e*, v*, OJe( . :
{ Q}*{E}Ef'=0:j [:J( )_Qradlx crum’“U

ffﬂf};fﬂd! olad] L (9@

ol ad]
v [sd] € SDF, ¢

aJe(e*, ¥*)

= Q[&d Tr.mf —

ami[sﬂrl @mi[ad]
Y rlsd] € IIf, 5, [sd] € SD%,¢c
GL5(®*, T*. Q) 8 (®*. T*) |
e -'.*F' ey U s —_— = EFF* — E:}
au'id} ¢ sd] [ awid] le ) ad]

v 30
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HL(®*, T*. Q)

0o

ﬂl.!ﬂr

aLe(@r. . Q)

dfﬂfrsd]

AL(®*, T*. Q)

'aﬂrsd]

gJe(®*. ¥

>0 = :
bog =
v sd| = SD°, ¢
50 = aJe (. ¥*)
d'i}w,-lsd] - Q[Sd] - ’
ril & Sd ~ I-.[L_!d .‘ d] - SDE:, C
50 = aJe(@*, o) 0
hHE - f" 2
@L[sd] s.]
l-hf d] - D:}, [5 ] E SE’ (&
>0
— mﬂl&d] Z {ﬂ"'l“i] =i ¥ lSd]
w[sd]ell

£ S°, ¢

SD°. ¢



Theorem :

C'onsider the quasi-static joint load sharing, routing and congestion control
problem in distributed systems with multiple competing classes. If for each class c,
J¢ 1s differentiable and conver in (®°. ¥¢) = (RC .LS). for each fired value of
200 T "L/ S "Lt (Lak B L /A
RGN T8 ... RCTE LSH L RCH 185,.. RO, BT,
then (®*. ¥*) = (RC,LS) s a Nash equilibrium solution 1f and only if

congestion control

aJe (@, ¥ P aJe(®*, ¥*)

OoTed] ~ 0 only 1 f e < =
L diﬁﬂ[#d-l O{I]Tr[-!d]

v wlsd] € IIfy, [sd] € SDS, ¢

routing

| LoAJ(@ ) [0J(®. %) G )
Ooted] > 0 only i f = = min = , min e

- 8{:Drr.n:£' l amﬂ[sd] plsd] dfpp{sd]
mi‘i‘!ﬂr‘ — D Q..

v wlsd] € II7, 45 sd| € SD°, ¢
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load sharing

aJ(®*. T - dJ (et ¥*)

|'.!F 3 s 1:.: fa
o |sd] dﬂ}_ad_l _

Uity > 0 only if

jck

Uro = o.w.

v [sd ], [sd] € SD°, ¢

i L% T b c
o1ad| i Z {I}“‘rad = 1 v [Sd] E SD , C
wisd]eIIf
L -, = -1
Z L'[-!ti] o \?‘ [S*‘; . S . (i
[.d]eDs, |

Proof: It follows from the Karush-Kuhn-Tucker conditions.O

Theorem : eristence

Consider the quasi-static joint load sharing, routing and congestion control
problem win distributed systems with multiple competing classes.

If for each class ¢,

1) J¢ 1s continuously differentiable in (®,¥) and

1) J¢ is (strictly) conver in (P, ) £ (RCY,LS%), for each fized value of
(B!, W, .. -l Wl el gerl | HC PC)

e (RCHL LB, .. RCFY LS L REM, L, . RE®. TSP),

then there exists a Nash equilibrium.

Proof: The constraint sets ¢}, + ¥ Drtad] = Ls @ofsd]s Prlsd) 2 0 V 7|sd

ﬂ'[ad]EnfM]

fa» (5d], and | ]ZD Via = 1, ¥a) 20 V [.d] € Df,), [s.] € S¢ define a convex,
[.d]eD¢
; [a.]

closed and bounded set.

Each cost function J¢ i1s jointly continuous in all its arguments and (strictly)

convex in (®°, ¥°) € (RC",LS), for each fixed value of
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[@l? ol Hc-1 -1 Fe+l getl ‘i’f. 1.1{’?]
c (RCLLSY,...RC, LS !, RO+, LS .....RC". L§").

Therefore, there exists a Nash equilibrium. ™

Theorem : uniqueness

Consider the quasi-static joint load sharing, routing and congestion control
problem n distributed systems with multiple competing classes.

[f for each class ¢

i) J¢ is twice continuously differentiable with respect to A° € K*,

i) J¢ s strictly conver in A° € K°, for each fired value of

(AY, o AT AR KO E(RE,., KN E B )
1) J¢ 15 concave in (AY, ..., AT AT L AY) € (K, L KL Ko, L KC)
for each fired value r::fﬁc < K¢, and
w) e = [ 75, 1 0] > 0 such that
‘(A ﬁJCIA
. T, a:;;fﬂ ) @ T a};a } ...| ts strictly monotone in A € K,

then there erists a unique Nash equilibrium.

Proof: The constraint sets A}, + Z AL =1, Aoy Xij 20 Vig € O Vo
ije0e
define a convex, closed and bounded set.

Using ii), iii) and iv) we can show that [G(A.r)+ GT(A,r)] is positive definite,

dJ( A it A) .
where G(A.r) is the Jacobian of |... 7}, 5;‘;"9 ) . r?)f‘fj } A,
[t follows that Z T { ri (A Z ;J°(A)} 1s diagonally strictly convex
c=1:eN¢ ij€0f

in A € K, for fixed r > 0. Then there exists a unique Nash equilibrium.X
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4.2.2 Nonlinear Complementarity Problem

In this section, we formulate the non-cooperative load sharing, routing and con-
gestion control problem as a Nonlinear Complementarity Problem (NCP).

Define the vector of class congestion control, routing and load sharing fractions
and Lagrange multiphers:

— [- . C L C e € e 1L
Z — |. {ﬁﬂzsd] 'ﬁ'ﬂ”” Q[sd '-':_I-'.'JEI] QIJ' J

and the vector of class derivative of the Lagrangian with respect to the con-

gestion control, routing and load sharing fractions as well as the Lagrange multi-

pliers:
- 8Je 5J°
VLIZ) = |.. - Q| - — Qg
S (@@z;ﬁ] [) (@ﬂm Q“-”f)

— AAE, = e KE
(1 ‘:.I:',,:,!,_,d] —-'Tr[.'lif]EH[c,i: '.'r._,!d])

- BJe -
( QE) o 1= Z '*-*"'[Fm]

Theorem :

C'onsider the guasi-static joint load sharing, routing and congestion control
problem in distributed systems with multiple competing classes. If for each class c,
J¢ 1s differentiable and conver in (®°, ¥°) < (RCC,LS). for each fired value of
(@1, P, .. Pt Pl Pt Pt HC PO
c (RCY LSY, ..., RCL, Ls* L, RC*H, LS, ..., RC", LSC),
then (®*,¥*) € (RC,LS) ts a Nash equilibrium 1f and only if it solves the following

Nonlinear Complementarity Problem:

VL(Z*)+=Z* =0
VL(Z*) >0
AR
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Proof: After some algebraic manipulations, we find that the NCP: VL(Z}xZ =
0; VL(Z)=20; Z >0 with Z and VL(Z) as defined above, is equivalent to the

[Karush-Kuhn-Tucker necessary and sufficient conditions. =

Theorem : eristence

C'onsider the quasi-static joint load sharing, routing and congestion control
problem in distributed systems with multiple competing classes.

If VL(Z) s differentiable :n (RC,LS)

and tts Jacobian matriz 1s strongly copositive in (RC,LS),

then there erwsts a Nash equilibrium.,

Proof: It is known [243], that the NCP: z = f() =0; f(z)>0; z >0 has a
solution if f is differentiable in E7 and its Jacobian matrix is strongly copositive
in E%. O

Theorem : uniqueness

C'onsider the quasi-static join load sharing, routing and congestion control prob-
lem in distributed systems with multiple competing classes.

[f the gradient vector of the Lagrangian (on the link flow space) with respect
to the link, node, computer site and rejected flows, as well as the corresponding
Lagrange multipliers 1s continuous and strongly monotone on the space where these
flows are defined,

then there erists a unigue Nash equilibrium on the hink flow space.

Proof: It is known [244], that if f : ET — E™ is continuous and strongly

monotone on ET, then there exists a unique z £ E™ such that z > 0, f(z) >

0, zf(z)=0. 0O
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4.2.3 Variational Inequality Formulation

[n this section, we formulate the non-cooperative load sharing. routing and con-
gestion control problem as a Variational Inequality Problem (VIP).

Define the vector of class congestion control, routing and load sharing fractions,

1T
- ;s e ¢ 1€ |
{'é! lI’) — [lll @D[de Few I:I}.n.[sd] "W Ll-’d] ll-ll-lJ

and the vector of class derivatives of the cost function with respect to the

congestion control, routing and load sharing fractions:

=

TJF@ ‘Ij‘) ﬁf}‘j T\ 'SJC 51.}{:
(P, = iy - - o —
! ﬁma[sd] #[Jdﬁfﬂ] amw[ad} C}h |sd] |

Theorem :

C'onsider the quasi-static joint load sharing, routing and congestion control
problem 1n distributed systems with multiple competing classes.

It for each class c,

J¢ 1s continuously differentiable and convez in (®¢, ¥¢) € (RC,LSY),
for each fired value of (@', W, ..., &1 ¥l et gl ¢ PO

e {RCH LS., RO LS o=+, 18, ..., RC%, LSF),

then (@, ¥*) =€ (RC.LS) 1s a Nash equilibrium i1f and only 1f it solves the

following Varmational Inequality Problem:

VJ(25, ¥« ((2,¥)—(27,¥7))20 vV (2,¥)<c (RC,LS)

Proof: If (®¢*, ¥°*) 1s a local minimum for the following minimization problem

minimaize Je(@ Wit P W, BC T
with respect to (P, ¥°)
such that (®°,¥°) € (RC,LS)

and J¢ 1s a continuously differentiable convex function over the nonempty con-

vex, closed and bounded set (RC®,LS°), then
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; =y |~
'sd]€SD* 1 OW lad)

[8Jc(@*. @)

L Pl g
¥ {[3}955&; o Glﬁfsd| )

aJc (. ¥*)

. f | £ ok L
Y (6 — )
GIELIID 8 Eg m|sd]

dJ (e, ¥*)
5{"..:':3&"]

x{u--“,d]—vfm} >0 v (&,T) e (RC,LSY), ¢
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Summing over all classes

aJe(e*. o , |
2 2 { ( . (@ofsa) = Pofsa) +

P E. d
¢ [sd]eSD* U@ ad)
oJ (@, T*)
| 4 s
+ E Joe * (Pnlsd) = Prfsa)) +
.'r-::!n;":EIIFJd- T":-!d]

5J(®*. T*)
+ [
Oty

* (Yoq) — ﬂi‘;w} >0 v (®°,¥°) < (RC,LS)

Another equivalent VIP formulation is the following Theorem:

Theorem :

Consider the quasi-static jownt load sharing, routing and congestion control
problem in distributed systems with multiple competing classes. If for each class c,
J¢ is continuously differentiable and conver in (®¢, ¥°) € (RC“,LSY),
for each fired value of (@1, ¥l, ..., &~ Pl Petl Petl  HC PC)

c (RCH LS, ....RC ' LS ! RC"! LSt .. .RC",LSY),
then (®*, ¥*) € (RC.LS) 1s a Nash equilibrium if and only if 1t solves the

following Variational Inequality Problem:

VIL(Z)*(Z-2Z)>0 VYZ>0

Proof: Karamardian shows that the NCP: f(z*)*z*=0; f(z*)>0; z* >0
and the VIP: find z* such that f(z*)*(z —2*) >0 Yz >0

are equivalent.C
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Theorem : eristence

C'onsider the gquasi-static joint load sharing. routing and congestion control
problem in distributed systems with multiple competing classes.
[fVJ(®.¥) 15 continuous on (RC,LS) and bounded,

then there exrists a Nash equiltbrium.

Proof: For a VIP: find z* such that f(z*)=(zr — 2%) =

continuous on A . then there exists a r* that solves VIP. C

V
-
<
H
M
%

if fois

Theorem : uniqueness

C'onsider the quasi-static join load sharing, routing and congestion control prob-
lem in distributed systems with multiple competing classes.
If the gradient vector YJ(A) of the cost function with respect to the Link, node,
computer site and rejected flows is continuous and strictly monotone,

then there erists a unique Nash equilibrium.

Proof: For the VIP:
find z* such that f(z*)*x(z —2*) >0 Yz € K

if f is continuous and strictly monotone, then there exists a solution. T
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4.2.4 K-K-T for Separable Cost Function

In this section, we derive the first order necessary and sufficient conditions for

a Nash equilibrium on the path flows, when the cost function of each networks

resource depends only on the flow on this resource and is convex with respect to

that flow.

According to the Nash equilibrium definition, each class ¢ minimizes its cost

function J° given the optimum decisions of all other classes.

MinImize

(I'l*. s ‘i.r:?
Je|

‘I,lt 11,::‘

with respect to

such that

HC-
‘I,C-h

)

c l= c (" :
Y T XD s A hi)

1]

X TN e A A F

:

s Z J[ad ’Emsd]" " Az["ﬂ’ t )1"5' 3d] ) *
(sd|

+ ZJEH (AL s ATy ooy ALa)

Bofed) T D @ig =1 VY [sd] € SD

@giadl *.rr[.:d] >0 VY Sd] - Hcsdj-. [Sd SDE

iy 20 V[d €Df,;, [s] €S°
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The Karush-Kuhn-Tucker necessary and sufhicient conditions are:

ajﬂd]( @.l ‘;”] ¢ O g \ ¢
dos, (ad] - Q:Jd] ® Sl = 0 V .sd € 85D ¢
8J“ (P, ™) ﬁJE( $*. U
1;_\ s — QF 1 + HEr — [}
T 9% ; dc::rg”d Clad) | * Prfad

v rlsd] € IIf, . [sd] € SD°, ¢

aJs (e ¥*) aJs( P . ¥
- -y +
SL'F;&] : {_FL d]

2
=

0J(B ) OTfy(® ) . ] :
T Gur, | oufy 01| * ¥oa) =

e

v [.d] € Df.,, [s.] € 8%, ¢

[s.]7



aa) (B, E) ) E
Fpey — Qf,q 20 V[sd] € SD°. ¢

olsd]

- 8752, )
]

= O0J (@, )

ﬁme[ | = Q::sd] 2 D
|3

T

v wlsd| € IIf, ;. [sd] € SD%, ¢

0J5g (8. T%)  BJfy(2". ¥)

e ' [yC
@’L‘“ ,_.!ﬂ'] aLjrsd]

- Qi

”d!EH:‘dd]
o Wi =1 v [s.] € 8¢, ¢
a'_.ci_‘;eﬂf,_i
Oofsd)? Prfsq) = 0 Vv misd] € Hfﬂ], sd] € SD°, ¢
¥eg 20 v [d] € D, [s.] € S°, ¢
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The partial derivatives of the cost function J°(®,¥) with respect to the path

c
s

r

4 can be written with respect to the link flows A{; and node flows A:

fractions ¢ s

0J5(®.®) 8J5(Ay)  0X
003 ad - OAf; 00,4
ANy o
= @}:’J = l*.}!'_a-:a'j - ‘;ris_] - Elisd':.} * lueﬂ[,d'}
0J (2. %) QA X
09 (ed - 9x 003 sd)

3";{?{&1} VAN 5 0
e Modl ™ Yo * Visa)) * Lienied

a Zd]{@"@} 5Jf:,d‘:'{ﬁo[sd]} _ é}’h‘g{sd
0% a A, 0o;

ol sd] ol sd]

E?Jfﬂd]{ Aﬂ["d} ) o C i
— i * (‘TE“{] F H.’[s * T'-"':[sci]}

OAG o

[
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0J5(2, ) OJ5(Ay;)  BXE
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Then the Karush-Kuhn-Tucker conditions become:
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Next, for each class ¢, we define the length for the rejected flow [sd|, the length

for the path 7|sd| and the length for the source-destination pair sd|:

BJS i1 Aviea))

jeNash _

ol sd| = A - 'ip.*i.d] e _“’,CS " w?&d}}
g4 FJE(A)
c.Nash ¢ ] ) o i
e 3 DA e o 4 e T +
1 iy
; 8JF(A1} c i & C
s Z a\¢ T r-} sd] 7 [s] Lliad]) 3 lTE'ﬂ'IJd]
, FJEL A
c.Nash L ' ] A=
il’d] Z E 5:)1.'3 * Vo] * Prlad] * Lijerlsd] T
?r[ad] 1J 13
. OJF(A;) i
N Z z ﬁ.}uc * F\'r{r:a] :F ﬂjrr[ad} % ll'ETf[,!d] =+
wisd] @ 1
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T o f.-: h *"”J] 7 o|sd| T I 7 * 1’.;]
d}"ﬂ[sdl 6}‘[.d]

External armving flow at a source i1s assigned to the destination that has the
minimum length from the source. However, this flow may be rejected if the length
of rejecting it i1s less than the lengths of the paths to its destination. If 1t 1s
accepted, then it is routed to its destination via the minimum length path.

In the next section, we will derive the same conditions by an alternative way,

and we shall state the above 1deas more formally,

4.2.5 V.I. for Separable Cost Functions

Equivalently, the Nash equilibrium definition, each class ¢ minimizes i1ts cost func-
tion J¢ given the optimum decisions of all other classes. We first solve the routing
and congestion control problem assuming that all other classes act optimally for

themselves. So, class ¢ first solves the routing and congestion control problems
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We can decompose these conditions for each source-destination pair sd| € SD°
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Therefore. there must be flow only on paths where the first derivative of the cost

function J<(®*, ¥*) with respect to the path routing fractions @7;,, 1s minimum

. i i aJs(e*.¥*) ¢ gJe(®*, ¥*)
: nily 1 .
‘-T[.!lif] onLy am:ﬂ-ad} — :9&);[5&1
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00 T 0%

mlad!
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Also. flow is not admitted into the network only if the first derivative of the

cost function J¢(@®*, ¥*) with respect to the rejection fraction oy 4 1s minlimum:
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Theorem : Routing

There must be flow only on minumum length paths:

e Nash= e, "'H:zsht Nashe
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Theorem : (ongestion Control

Flow 1s not admitied into the network only if its rejection length 15 less than

the minimum length path to its destination:

c,Nashs= e, Nashs . c Nashs
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@f:r_;‘; =) 0.,

ﬂb;rsd " Z {I}TI" sdJ — 1 Wr ‘Sdl < SDE c

108



Having found the optimum routing and congestion control decisions, we proceed

to solve the load sharing problem for class ¢ assuming that all other classes act at

their optimum decisions. So, the load sharing problem for class ¢ is

MINIMIZE
1 C
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The necessary and sufficient optimality conditions for class ¢ are:
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We can decompose these conditions for each source node |s.] = §¢

dJ (. ¥*)
2 — o« (U —Ufy) 20 ¥ ¥ LS
-d)eD¥, | W) '
such that
L S
E t[sd} = 1
d)eDs, |

lfey >0V [.d] € Df;

Therefore. there must be flow only for source-destination pairs for which the
first derivative of the cost function J(®*, ¥*) with respect to the destination load
sharing fractions ¥f, 4 1s minimum:
oJe (@, ¥*) " aJe(®*, ¥*)

IUf g - 5‘1.1'{, "

(1

V[.d]#[d], [d],[d

Ui > 0 only L f

Dy,

Theorem : Load Sharing

For each source, there must be flow only to destinations whose length is mini-

MU
e . c,Nashs __ _ s c,Nashs=
Uing >0 only if Ly = mlin{i[sd;] }

[sd']
v 1
Vi) = 0 0.W.

> Yy =1VI[d eDf;s] €5 c
dJeDy,

Thus, in this section we have formulated and solved the load sharing, routing

and congestion control problem as a Nash game among multiple competing classes.
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4.3 Stackelberg Equilibrium Solution

In this section, we formulate the joint load sharing, routing and congestion control
problem in distributed systems with two classes of jobs, one more powerful than
the other, as a non-cooperative Stackelberg game. ‘A simple example of such classes
of jobs 1s when they have different priorities.

Customers of the most powerful class use the resources of the distributed system
for their own benefit, ignoring the inconvenience that they cause to customers from
the less powerful class.

After the pioneering work of von Stackelberg (1938), these games have been
named Stackelberg games. Next, we briefly survey research on static Stackelberg
games:

Bracken & McGill [76] formulate mathematical programs with optimization
problems in the constraints, i.e. Stackelberg games. Polak & Mayne [382] present
an algorithm for minimizing a function subject to functional inequality constraints.
Blankeship & Falk [54] describe a generalized cutting-plane algorithm for con-
strained optimization and minimax problems.

Simaan [447] considers Stackelberg games for two-level optimization problems.
(astanon & Sandell [91] illustrate the non-convexity of Stackelberg games and
suggest that the leader’s cost function must be selected carefully.

Papavassilopoulos (372, 371] describes algorithms for leader-follower games. He
notice that difficulties arise due to the nonconvex character of the follower’s re-
action set. He also [373] solves the linear quadratic Gaussian static Nash and
Stackelberg games. He presents necessary and sufficient conditions for existence
and uniqueness of the solution as well as procedures for finding all the solutions.

Bialas & Karwan [51, 52! present techniques for Stackelberg games. Shimizu &
Aiyoshi [442] apply the penalty method to solve the Stackelberg game. Chang &
Luh [95] and Luh, Chang & Chang [313] derive necessary and sufficient conditions

for Stackelberg games via the inducible region concept.
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[n the following, we shall develop a methodology for the joint quasi-static load
sharing, routing and congestion control problem based on the Stackelberg game
theory.

Next, we give some definitions for a two hierarchical class game similar to those
in ‘27! for Stackelberg games:

Definition

In a two hierarchical class joint load sharing, routing and congestion control
problem, with the most powerful (e.q. high priority) class o« as the leader and
the less powerful (e.g. low priority) class 3 as the follower, the set RP(®%. ¥},
defined for the class a strategy (®*,¥*) € (RC*,LS®), by:

RO(®>. ¥2) ={ (®°.9%) c (RC®, ¥9) such that :
Jd{@a,@q,@ﬂ*‘l’ﬁ} < Jﬁ{‘i’ﬂ,@’ﬂ,‘i"fj,‘i’ﬁ)*
v {‘i’-‘ﬂ,‘i"j), such that (®°,¥P) ¢ (RcﬂkLSﬂ}}

1s the optimal response (rational reaction) set of the less powerful class 3 to the

strategy of the most powerful class a.

What the above definition says is that the less powerful class 3 chooses its
decision vector (®”, ¥”), that minimizes its cost function J%(®=, ¥~ &5 ¥?), for
given strategy (®°, ¥*) of the most powerful class a.

Definition

In a two hierarchical class joint load sharing, routing and congestion control
problem with the most powerful (e.g. high priority) class a as the leader, a strategy
(@, ") ¢ (RC,LS®) 1s called a Stackelberg equilibrium strategy for the most

powerful class a if and only if

inf JH (@, ¥ d° PP < inf J (@, ¥, &° ¥
(B3 PB)eRE(Par Far) (B2 PO )cRE(Pa Fa)

v (%, ¥*) € (RC* LS?)
This means that the most powerful class a chooses its strategy (®**, ¥2*) that
minimizes its cost function J*(®*, ¥* &° ¥P) given the optimal response set

RZ(®*, ¥>*) of the less powerful class 3 to its strategy (@o*, ¥or),
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Definition
Let (@, ¥**) ¢ (RC*.LS%) be a Stackelberg strateqy for the most powerful

(e.g. high priority) class a. Then any element (®°*, ¥7*) ¢ RE( P2+, T**) 15 an
optimal strategy for the less powerful (e.g. low priority) class 3 that is in equalib-
rium with (@2, ®**). The strategy (B<*, ¥*, $°*, ¥P*) 15 a Stackelberg solution

for the game with the most powerful class « as the leader and the cost pair

Jo(@ar Jox PPt Phr) JO(Por, It PO WP*) is the corresponding Stackelberg

equilibrium outcome.

4.3.1 Nonlinear Programming Formulation

In this section, we formulate the two hierarchical class joint load sharing, routing

and congestion control problem as a Nonlinear Programming Problem (NPP).

Theorem :

('onsider the quasi-static two hierarchical class joint load sharing, routing and
congestion control problem in distributed systems.
(@*.®*) € (RC,LS) 15 a Stackelberg equilibrium if and only if it solves the

follounng Nonlinear Programmaing Problem:

minimize JE( @ ¥ P Ph)
with respect to (@, e, ‘I’ﬁ, ‘I’B, QB]
such that (@, ¥*) € (RC*,LS*) (&° ¥°) c (RC?,LSP)

Jo(@*, 9, &% ¥P)= min JA (8", T°, &7, OF)
(®° FB)e(RC”® LS?)

Proof: It follows directly from the definition of the Stackelberg equilibrium. O
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Theorem :

Consider the quasi-static two hierarchical class joint load sharing, routing and
congestion control problem n distributed systems.

[f the cost function of the most powerful class o, J, 1s differentiable and convex
in (@, ) = (RC*.LS?), for ecach fized value of (87, ¥°) < (RC?.LS") and
the cost function of the less powerful class 3, JP. is differentiable and conver in
(®°. ¥P) = (RC”,LS”). for each fired value of (2, ¥*) € (RC*,LS%),
then (@*,¥*) € (RC,LS) is a Stackelberg equilibrium if and only if it solves the

following Nonlinear Programming Problem:

minimize Jo (@, O P TP

with respect to (®%, T*, $° TP QF)

-
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Proof: The Lagrangian for the less powerful class & is
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The cost function for the less powerful class 3, J°, is convex in (®°. &)

[RC’j,LS’j}, so the Karush-Kuhn-Tucker necessary conditions are also sufhicient :
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The above conditions result in a convex set of flows r:b'f[sdj, ¢£[M}, igilf‘id] v wlsd] €

T, [sd] € SD®. O

Theorem :

Consider the quasi-static two hierarchical class joint load sharing, routing and
congestion control problem in distributed systems.

If the cost function of the most powerful class o, J*, is differentiable and conver
im ($=, &) € (RC*,LS%), for each fired value of (®°,¥?) ¢ (RC".LS") and
the cost function of the less powerful class 3, J°, is differentiable and conver in
(®P, ¥P) € (RC®,LS"), for each fized value of (8%, ¥=) € (RC*, LS%),
then (®*,¥*) € (RC,LS) s a Stackelberg equilibrium 1f and only iof it solves the

following the Aarush-Kuhn-Tucker conditions:
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Next, for each class c. we define the length for the rejected flow sd|. the length
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External arriving flow at a source is assigned to the destination that has the
minimum length from the source. However, this flow may be rejected if the length
of rejecting it is less than the lengths of the paths to its destination. If it is
accepted. then it is routed to its destination via the minimum length path.

Theorem :

Consider the quasi-static two hierarchical class joint load sharing, routing and
congestion control problem in distributed systems.

[f the cost function of the most powerful class a, J*, is differentiable and conver
in (&=, ¥>) € (RC?*,LS*), for each fized value of (7, ¥P) € (RC”,LS”) and
the cost function of the less powerful class 3, J°, s differentiable and conver in

(&%, ¥8) = (RCP,LSP), for each fired value of (>, ) c (RC*,LS*),

|
e
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then (®*,®*) € (RC,LS) s a Stackelberg equilibrium of and only if if satisfies

the following conditions:

congestton control

m_,d ~ 0 GTIEy lf I;l[.s.::;jacﬁu _ mzn{fﬂ .bmck- n{fﬂ: Stackt}}

o|sd] plad]

O = ) 0.1U.

o|sd

v [sd] € SD*

routing

a,Stack= a,Stack= . 1‘_‘t Stacks
Tr'.id] >0 rjﬂfy If de;] = m1 {E adt]: ?p. af] :d!i }}

S .
DTisd] = 0 0.,

v T|Ed] .n;i’ [Sd] = S D"

load sharing

Uiy > 0 only if Eijm':k' = m {E'if*]mc&*}

mi] = (} 0.1,

v [.d] € Df,;, [sd] € SD®
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V [sd] € §D”
routing
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G . 1
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load sharing
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Proof: It follows from the Karush-Kuhn-Tucker conditions.C

g =1 V¥ [sd] € SD®

=0 ¥ [sd] € SD?

=0 Y r[sd] € I} 5, [sd] € SD”

=0 VY [sd]€SD”
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Theorem :

('onsider the quasi-static two hierarchical class joint load sharing. routing and
congestion control problem in distributed systems. [f the cost function of the less
powerful class 3. J°. s strictly conver in (27, ¥?) € (RC“.LS"%). for cach fired
value of (®*, ¥*) = (RC*.LS"),

then the most powerful class achieves smaller cost if 1t acts as a leader in the

Stackelberg game formulation than if it participates in the Nash game formulation.

Proof: This is a well known result for Stackelberg games 27].C

4.3.2 Nonlinear Complementarity Problem Formulation

In this section, we formulate the class & optimization problem as a Nonlinear
Complementarity Problem (NCP).
Define the vector for class 3 of the congestion control, routing and load sharing

fractions as well as Lagrange multipliers:

] i ¢ T
8 _ ¥ B 3 3 3
Z e B E W mﬂ'.‘!d] LR {I]ﬂ-[-sd] o E Q[.’d] (I u[.ﬂd] o Q:_ﬂ] l-!--l]

and the vector for class 3 of the first derivatives of the Lagrangian with respect

to the congestion control, routing and load sharing fractions as well as Lagrange

multipliers:
. [ 8J° NS
VIA(ZP) = |.. ( — — Qﬁ-d) (— — Q7 1) -
| o sd| e wisd]
| 00 1,a) O 1 d)
3 3
L — d:'msd] - E [i}'.rr[sd]

[d]eD

[s.]

145



Theorem :
Consider the quasi-static two hierarchical class joint load sharing. routing and

congestion control problem in distributed systems. [f J° 1s continuously

differentiable and conver with respect to (®°.¥°) € (RC”.LS").
then (®*.¥*) € (RC,LS) s a Stackelberg equilibrium if and only if it solves
the following problem

minimize JE( @, e, $P, )

with respect to (@, ¥, &7 TP QY)

such that (>, ) € (RC*,LS*) (&°, ¥P) < (RC”,LS")
VIA(ZP)+ZP =0
VIA(ZP) >0

78 >0

Proof: After some algebraic manipulations, we find that the NCP: VL(Z) =
Z =0 VLIZ)>0; Z >0 with Z and VL(Z) as defined above, 1s equivalent
to the Karush-Kuhn-Tucker necessary and sufhicient conditions for the follower’s

minimization problem. O

4.3.3 Variational Inequality Formulation

In this section, we formulate the class 3 optimization problem as a Variational
Inequality Problem (VIP).
Define the vector for class J congestion control, routing and load sharing

fractions:

8 .8 3 3 B T
((I) g.lI’ ) = [... {Po[ad] cwn D (sd] *** ur[ad] }
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and the vector for class J derivatives of its cost function with respect to the

congestion control. routing and load sharing fractions:

9J? a8 aJ
SR = | e—n T e et
Ooisd)  asgient®, 9Pnind] IV

Theorem :

('onsider the quasi-static two hierarchical class joint load sharing, routing and
congestion control problem in distributed systems.

If J? 1s continuously differentiable and conver in (®°, ®9) < (RC*.LS”).
then (@*,¥*) € (RC,LS) s a Stackelberg equilibrium of and only of ot solves
the following problem:

minimize Je( @, T, 5, PP

with respect to (@, e, ®° TP QF)

such that (&>, =) < (RC*,LS®) (®°,¥P) < (RC’.LSY)
VI3, T, 7, T « ((BP, ¥P) — (&°, ) > 0

v (5, ¥3) ¢ (RCP, LS")
Proof: If (®°*, ¥”*) is a local minimum for the follower’s minimization problem

MINIMze JO( @, ¥, ° PP
with respect to (®°, ¥P)

such that (@7, ¥7) ¢ (RCﬂ LS”)

and JP is a continuously differentiable convex function over the nonempty con-

vex, closed and bounded set (RC”,LS”), then
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Another equivalent formulation i1s given in the following Theorem:

Theorem :

C'onsider the quasi-static two hierarchical class joint load sharing, routing and
congestion control problem in distributed systems. If J® is continuously
differentiable and conver with respect to (®°, ¥P) € (RCP, LS®).

then (®*,¥*) € (RC,LS) ts a Stackelberg equilibrium if and only if it solves

the following Variational Inequality Problem:

minimize JE( @, T 8 o)
with respect to (@, ¥, PP, 'I'-'ﬁ)
such that (@, ¥*) € (RC*,LS*) (®°,®7) £ (RC”,LS")

VIP(ZP) = (ZP -Z%) >0 VY ZP>0

Proof: Karamardian shows that the NCP: f(z*)*z* =0; f(z*)>0; z* >0
and the VIP: find z* such that f(z*)=x(z —2*) >0 Yz >0

are equivalent.O
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4.3.4 K-K-T for Separable Cost Functions

In this section, we derive the first order necessary and sufficient conditions for a

Stackelberg equilibrium on the path flows, when the cost function at each network

resource depends only on the flow on this and is convex with respect to that flow.

The partial derivatives of the cost function J*(®<, ¥* &° ¥7) with respect

to the path fractions o2 , can be written as the with respect to the link flows AT

and node flows AT:

aJ3 (@, ¥, 7, ¥F)

8@?{_,&]
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0034

aJe (@, T, $° )

o
@mr}ia d|

I

I

':E;Jz'[j{Aij) . 5)\;:3
9A; O pa)
Siﬁihu} = = =
e (Visd) + Vo] * Uaq)) * Lisentsdl
i)
5""}-1'&(11:} % @)ﬂf"
5A? a@ilsd]
6J?Fr(h’.) Cr - ox ¥
5\e x (T’i;d] T ] ™ u!hd]) * 1LEw{ad]

SJ[E:,&( -ﬁ-ﬂ;:d] } 3 ‘)lgi.sd]
*

A g 005 .
aJ[l::.i}( ﬂﬂ[sd] ) o a -
— * (Vod) T Vs * ¥isa))
Alsd

149



BJg (@, ¥, $°, T¥)

o

Cr
[sd]

AJ (@, ¥, P, ¥H)

T |
ﬁuhﬂ

GJcy (@2, T2, $°,¥7)

[ [ X
51’53.::]

8.1, ( @, T, ®7 PP

{E}ﬂl’ﬁdl

%

AN,

'»

wiad|E H.’u;d]

OJ(A)
%

)

wlsd]|E HF;;H

SJF:,{AU]

X
T d)

o
* Yrov %

o'

0J7(A;)

oAg -

%

ron
I.!ﬂ.!

* =y

A

OJGq(Aoisa])  OAG4

A od)

ﬁjlc:d]( Aa[sd? )

i '1':1. ’
0Yfa

@}':[ad]

3Jﬁﬂﬁhfﬂ}

x Lo
* Vs] * Pojsd]

OA?y

JAZy

aJﬁﬂbﬁ{ﬂ)

* cx
Oty

ﬁ)aff d

* Ys)

=4 T
@risd] * lijenisd]

| o
.I_-g] * {Fﬁ[,’d] * li'Er.m"

150



The partial derivatives of the cost function J°(@®, ¥) with respect to the path

. 3 . . . 3 3
fractions ¢_: , can be written with respect to the link flows A, and node flows A}

1
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Substituting into the lengths defined in section 4.3.1, we have the length for
the rejected flow [sd], the length for the path 7|sd] and the length for the source-

destination pair [sd).
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4.4 Application to Datagram Networks

[n this section, we apply the methodologies developed in the previous sections to

datagram networks.

4.4.1 Cost Functions for Multiple Classes

Numerous books have appeared on queueing models 334, 116, 414, 477, 399,
235, 251, 255, 115, 10, 427, 112, 202, 332, 185, 127, 516/, on queueing networks
249, TT, 288, 291, 185, 332, 111] on their use in analysis and synthesis of com-
puter networks and systems [184, 263, 488, 438, 149, 214, 471] and on network
optimization problems 256, 431, 484, 45, 432, 505|. In this section, we propose
using performance measures derived by modeling the system using such queueing
models. Next. we give an example for M /G/1 queues. Let the total arrival rate
to the system be A. Consider a system resource (node, link, computing site. etc.)
17 with service rate (';;. Let also 7;; be a flow independent constant delay (e.g.
propagation delay) at resource 17. Packets from class c arrive at rate A, (Poisson)
and require service (general distribution) with mean 1/4 and second moment z2.

We may take as cost function for class ¢ at resource 17 the weighted average packet

delay 256, 45]

- Z}l Et#CEJ -|
JG =i | Ly

T, T ——

Tl vl oty (#Cis = L)

The first and second derivatives of J; with respect to A}, are
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Consider a system resource (node, link, computing site, etc.) i with m,,
servers, each at service rate (',;. Let also 7,, be a flow independent constant delay
(e.g. propagation delay) at resource :j. Packets from class ¢ arrive at rate \¢
(Poisson) and require service (exponential distribution) with mean 1/x. We may
take as cost function for class ¢ at resource tj the weighted average packet delay

f": - )'nf_;; i 1 N Pq.ij 4 e

" E. g = T ! P ?.I?
! A “Cu My * I,tLCl'J' i ; /‘\i‘

B ha -

where Pp ;; 1s Erlang’s C formula (probability of queueing) (see section 4.8.1).
Of course, considering other queueing models, we can also define other cost

functions (see section 4.9.2)

4.4.2 Cost Functions for Priority Classes

Consider a system resource (node, link, computing site, etc.) 17 with service rate
(';;. Let also 7;; be a flow independent constant delay (e.g. propagation delay)

at resource 1j. Packets from class ¢ arrive at rate A{; (Poisson) and require ser-

vice (general distribution) with mean 1/u° and second moment (z¢)?. Classes
1.2.....c — 1 have non-preemptive priority over class ¢, while class ¢ has non-
preemptive priority over classes ¢+ 1,¢c + 2,.... We may take as cost function for

class ¢ at resource 17 its weighted average packet delay (255, 256, 45

_ o -
k k\2
g, 1 E ”\ij * (%)
¢ = -] * | — k=1 L T'j
2 A il A el A& T :
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Its first and second derivatives with respect to A; are
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Consider a system resource (node, link, computing site, etc.) 17 with service
rate (;;. Let also 7;; be a flow independent constant delay (e.g. propagation

delay) at resource ij. Packets from class c arrive at rate A¢. (Poisson) and require

service (general distribution) with mean 1/p° and second moment (z¢)?. Classes

1.2.....c — 1 have preemptive priority over class ¢, while class ¢ has preemptive

priority over classes ¢ + 1,¢ + 2,....

resource 1j its weighted average packet delay 1255, 256, 45]
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We may take as cost function for class ¢ at
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We can use the above defined functions to evaluate the length to destinations

as well as the path lengths.

we send jobs to minimum length destinations via minimum length paths.

Then using the Theorems of the previous sections

[f the

rejection length is the minimum, then we rejected them.

We further illustrate the proposed methodologies and the performance of the

proposed algorithms by explicitly solving some examples.
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4.5 Example 1: Two-classes Two-processors

4.5.1 Introduction

In this section, we introduce a simple queueing model for two classes of jobs that
share two servers (Figure 4.1).

The problem is to assign these jobs to the two servers so as to muinimize a
delay objective. An application is routing, where two classes of packets may use
two different links for transmission between the source and destination. Another
application is load sharing for a multiprocessor system, where two classes of jobs
may use two processors for execution.

Let class o jobs arrive to the system with rate A\* (Poisson arrivals) and class J
jobs arrive to the system with rate A\° (Poisson arrivals). So, the total arrival rate
is A = A®* = X% Jobs of both classes may be served at either of the two processors,
which have service rates C'; and (5. So, the total system capacity is C' = ¢} + (.
Without loss of generality, let the service requirement of each job be exponentially
distributed with mean 1. The fraction of class a jobs assigned to processor 11s @7
and to processor 2 is ¢%; and the fraction of class 3 jobs assigned to processor 1 1s
¢ and to processor 2 is 0.

Furthermore. for stability reasons it is assumed that the total arrival rate 1s
less than the total service rate: A+ M < C; +C, or A < C.

In the following sections, we consider three formulations and solutions for shar-

ing the two processors among jobs of the two classes.

4.5.2 Traffic Aggregation

In this section, we find the optimal load sharing policy, when the two classes are
aggregated into a single class. Therefore, the fraction of class a jobs assigned to
a processor is equal to the fraction of class 3 jobs assigned to that processor, i.e.
P = cﬁf = ¢, and ¢5 = &2 = ¢,. If both classes want to minimize the average job

delay in the system [256], then we have the following optimization problem:



i ‘:Il_' |
@1

Figure 4.1: Two-class two-processor load sharing.
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MANITNLIE

Moy i L e
PRTEIT O — (X2 M) w @y Oy — (A% + NB) % o
with respect to @1, @
such that o1 +0, =1, 0,20, @, = 0.

The average delay objective function J(¢;, @,) 1s convex with respect to (0,. @)
over the convex space @; + @3 = 1, ¢1,0, > 0, for C; — (A* + M) x ¢; > 0 and
(s — (X% + A?)x ¢, > 0. This is a simple problem and can easily be solved 45, 141].

First define the auxiliary variable

_C1+C’E—)ﬁ“—k3* Sy
- A+ AP uf{_;:- + \/E.F:
Then, the following policy optimally assigns the arriving jobs to the two pro-

K,

CERROTS.

IF 15 =+/00h £ 08450 ond Oh~oC05% XE 4 WP €005

Cy

then cﬁ?‘{:}{aﬂ_)ﬁ —

K,

If 0.€ 38438 2 & —+/0:0,
then ¢ =1

If 08435 € 0, — /05

then @] =0

Of course, the optimum load sharing fraction to the other processor is @} =
1— ¢t
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In Figure 4.2 we show the optimuin routing fraction to processor 1. @], versus
the system utilization. A/(', for fixed processor 2 capacity, (', = 1, and different
processor 1 capacities, ('; = 1, 2, 3. 5. 7 and 10. When the two processors have
equal capacity, ('; = (', = 1, then the flow is split half to each processor (&7 =
@, = 0.5). As we increase the processor 1 capacity, then this processor tends to be

exclusively used (@} = 1) for a larger range of system utilization.

4.5.3 Team Optimum Solution

In this section, we find the optimum load sharing decisions, when each class is
treated independently from the other. The fraction of class a jobs assigned to
a processor may be different than the fraction of class 3 jobs assigned to that
processor. However, both classes minimize the same objective - the average job
delay. This problem can be considered as a cooperative team game between the

two classes, where each class solves the following problem:

MINIMIzE
. 3 3
e og Ga y e | = 3
S L Ao 4+ )8 Cy — X@ % ¢ — )8 « ¢
D L 1
. - o4 -
o o )\B C-*E_Aawg—hﬂmf

with respect to of, oF, *’i"fa d’g

such that ¢F +@F = 1, Gﬁ"f +¢:r§ =1; &% 85, a‘:ﬁi, {Dg > ).

The objective function J( o7, 05, @If, qbf) 1s convex with respect to (@7, 07, v:;i':ffT {:ﬁf )
over the convex space ¢f + @5 = 1, cﬁrf - e::h’f =i L @35 g,a;friqﬁg > 0, for C'; — A* =

0% — M« ¢? > 0 and for Cp — A* = 6% — A% x ¢7 > 0. Define the auxiliary variables

:cl+cg—2a&—}ﬁ* ey,

B-'ﬂ:
1 Ac V0 + v
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Figure 4.2: Optimum routing fraction to processor 1, @}, versus the system uti-
lization, A/C, for fixed processor 2 capacity, C, = 1, and different processor 1
capacities, (/y = 1, 2,3, 5, 7 and 10.
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Then, the following policy will optimally assign the arriving jobs to the two

PIrOCessOors:

If X+ <0+,

then PT* = Z. = - kY
= (1 o Atﬁl‘a&ﬂ* -3

accept the solution only if

C .
Cr=dte = y Cl Cz — A%¢5") < N
74
=N
Cp— X2 266 — X8ty 5

Vg,
If X+ X <0, —+CiCy,

then of* =1, qj?* =1

If A% Cs— NP Or= s/ Ci0sl~(T; —~/C2);

then ¢2* =1, ¢* =0
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If AT = X0, = V(O C2 (T3 — VT1),s

e Er
then o= 0, & =1
If A"+ )\ <y —Ci(h,

then 03" =10, »:I'?f' = 0

 EEr——

If X+ 20— V00 and VT, - VT < VOGG(VTT - VT3),

then of* =1

P

-3
@ B Ay

If X+ X >0, —C1(r and \*/Ci — NV, < VOIG(VT: - VT),

then o7* =0

¢

-3
»

G
@y =

If S=p B - O, Gnl Ny le A0 & TG E — Gy

Il
l_l

3w
then @

G4 NP
PP il
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If A2+ 28>y — VO, (5 and N1 = A2/ < VO (V3 — VT ),

then r:::"f' =)

Of course, the optimum load sharing fractions to the other processor are 05* =
l — of* and Qﬁ‘ =1-— @‘f‘*

In order to find the optimum load sharing fractions (@?',cﬁf*} for the first case
of the team load sharing policy, we give all possible values to ¢7 € [0,1] and
calculate the corresponding values for the ¢f
Gy =Ny
P = \a ~ Ay
Then we check if the conditions for the resulting load sharing fractions @7, @3

21
T : . . : .
o). @, are satisfied and accept them as optimum load sharing fractions, if so.

[n Fig 4.3, we show the optimum load sharing fractions (@f", ¢7*) for a simple
homogeneous case ('; = (', = 1 and A* = X® = 0.1,...,0.9. We note that the
solution pairs form a straight line which is stated in the Proposition 1. Thus we
have a multiplicity of optimum load sharing fractions and we can choose any pair of
them with some other criterion. For example if we want ¢f = @7, then the solution
set reduces to a single point that is also the solution of the previous section, where
we treat the two classes as one.

Proposition 1:

The set of the optimum load sharing fractions (qb‘f",d}'f'} for fized arriwval rate
A and NP and fized processor capacities Cy and Cy forms a straight line.

Proof: The general equation that gives the optimum load sharing fractions is

O«
as __ C‘]_ T T Aﬁfﬁ’l iy
Pl © \@ - 1

Obviously, this equation describes a straight line. O

In Figure 4.4, we show the optimum load sharing fractions (¢{*, t;a‘i’f') for fixed

processor capacities, C; = 2, C, = 1, fixed class 3 arrival rate, A\’ = 1, and
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Figure 4.3: Team optimum load sharing fractions (¢¢", f_:b‘f*) for a simple homoge-
neous case C; = C» = 1 and A* = )* = 0.1, ....0.9.
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different class a arrival rates, A* = 0.1,....1.9. We notice something remarkable.
The straight line solutions for different class o arrival rates intersect at a single
intersection point. This means that there is a common pair of optimum load
sharing fractions (ﬂfﬂf'?uﬂ;j*}j where we can optimally operate for different class a
arrival rates. 5o, we can use the optimum load sharing fractions of the intersection
point and operate optimally even if the class a arrival rate vanes. Proposition 2
describes this result more formally.
Proposition 2:

For a gwven system C'; > (5, unth fized class 3 arrival rate 2

If

V0, 3
< A
VO +vCy ~

then the straight lines of the team optimum fractions (fb‘fﬂdh ), for different

G£CI”{01+CE_'A£3}*

class a arrival rates N\ ( A* + AP < C) + C,), intersect at a single point

v (i
qﬁﬂl — = —
- VAG TR VA G
{é_a,_E*Cl—LCE—AB* V/Fl
oM A VG + V

i.e. this intersection point 1s independent of the class a arrval rate A®.
Proof: Let the straight line of the optimum load sharing fractions for a given

class a arrival rate A{ be

LG =X O+ G =X =N VO
3 AS VG + V0,

Let also the straight line of the optimum load sharing fractions for another

given class a arrival rate AS be

Co—XP02" 16y 4 G — 3T —0P Oy
Ag AS V1 + V0

Since the slope of each line depends on the class a arrival rate, these lines

d)cru .
1 =

will intersect each other. Now in order to prove that all lines intersect at a single
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Figure 4.4: Team optimum load sharing fractions (cﬁ?‘,cﬁf'} for fixed processor
capacities, C; = 2, C, = 1, fixed class 3 arrival rate, \® = 1, and different class
« arrival rates, A* = 0.1, ...,1.9.
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point, it is enough to prove that the intersection point is independent of the class
a arrival rate A\¢.
Let {é?#.mfﬁ] be the intersection point of these two lines, 1.e. of* = o™ =

o,

++ o i [Pk EE-
0t* and ¢ = &) = ¢{". Then

Cr; _ Ad@f# - C"’l =+ [:.,E — ,)5.? = )Hd . ‘v’(_rl _
g A3 vCi+ V0,
_G=MeF O+ Gox-N VG
= \g A vCi+ V0,
and finally
5 _ & - ('1_._(‘2—)&3:# v ('
1 )3 AP \/Cr1 T fa-
. il
':Jt"l - = T
v+ Vs

Thus the intersection point (Cﬁ?#z f?f#) is independent from the class a arrival
rate A\*. In order for the intersection point to be also a solution, 1t must be in the
range (0 < rﬂ'f# < 1. Thus the result. O

In Figure 4.5, we show the optimum load sharing fractions (iﬁ?*,{ﬁ?‘} for fixed
arrival rates A* = 2, A? = 1, fixed processor 2 capacity (' = 1 and different
processor 1 capacities '} = 2.1, ..., 3.8. We see that the solution lines are parallel.

Proposition 3:

The straight lines of the optimum load sharing fractions for fized arrmval rates
X2 A2, fired processor 2 capacity Cs and different processor 1 capacities C'y are
parallel.

Proof: The optimum load sharing fractions are described by the following

straight hine

bt — C] - ;"\'ﬂfﬂz Cr1 -+ frg - A% — }mﬁ y’rﬁ
g _

* —— —
A“ e \,"f?} -+ \.,x“'(._fg

that has slope independent of the capacity of the processors. O
As we have seen we have a set of optimum load sharing fraction pairs (@77, c;:rf“)

that all achieve the same global minimuimn delay. However, these optimum load
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Figure 4.5: Team optimum load sharing fractions (977, ¢7%) for fixed arrival rates
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sharing fractions will give different average delays for each class. So. we can choose
the operating point using another delay objective. In Figure 4.6, we show the
difference in the average delay of class a and class J jobs, J®* — J“*, versus the
class a optimum load sharing fraction, of*, for fixed processor capacities, (', =
2, (5, = 1. fixed class 3 arrival rate. A° = 1, and different class a arrival rates.
A" =0.1,....1.9. An example is when it 1s desired that both classes have the same
average delay. Then this point will be the intersection of the delay difterence line
and the zero delay difference line. The operating point for this case is the same
as the case where we aggregate the two classes into a single class and therefore we
treat them similarly. Another example is when there is a secondary objective that
class a should receive better treatment than class J. Then the lowest point of the

delay difference line J** — J°* is chosen.

4.5.4 Nash Equilibrium Solution

In this section, we find the optimum load sharing decisions, when each class chooses
the best strategy for its jobs given the decision of the other class. Class a assigns
its jobs to the two processors such that the average delay of its jobs 1s minimized.
Similarly, class 3 assigns its jobs to the two processors such that the average delay
of its jobs is minimized. Therefore jobs of different classes do not have the same
objective and they compete for sharing the two processors. We formulate and solve
the above multi-objective optimization problem as a non cooperative Nash game
between the two classes. After reaching a Nash equilibrium, no class of jobs will
have a rational motive to unilaterally deviate from its equilibrium strategy.
Class « solves the following problem:

minimaize

|

Jo (4%, 82, ¢0% 85°) = . +

"
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Figure 4.6: For Team optimal solution, the difference in the average delay of class
a and class 8 jobs, J** — JP*, versus the class a optimum load sharing fraction,
#%*, for fixed processor capacities, C; = 2, C, = 1, fixed class @ arrival rate,
M =1, and different class « arrival rates, A> = 0.1,..., 1.9.
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with respect to of., &3

such that o7 +05; =1, oF, o =20

The objective function J*(of. o5, c_i‘»’f*._ {f}f‘) 1s convex with respect to (. o9)
over the convex space 6% + 0% = 1,0%, 05 > 0, for C; — A\* x 6% — M3 x 0] > 0 and
Oy — X% g2 — A x g™ > 0.

(Class 3 solves a similar problem:

TMINIMLZE

JB(65°%, 037, 01, 85) = ' 4
with respect to Gﬁ‘?; fﬁ*g

such that {?Jf + ﬁf = 1, {,D’lﬂ d}f > 0.

The objective function Jﬁ(aﬁ‘j‘*,@?*,*ﬁf,@g) 1s convex {r;b'f, n:ﬁ'f_f} over the convex
space @f ~é—ﬂfr'§ = l,qbf,cﬁv'f > 0, for C — A% = ¢%* — )7 = cl‘:rf > 0 and 'y — A% = 05" —
A 0f > 0.

When the players are in a Nash equilibrium, no player can improve his cost by
altering his decision unilaterally. Next, we give the definition of a Nash equilibrium
In our context:

Definition :

A vector [, @57, quf'?{ﬁ‘g'] with ¢2* + ¢5* = 1, qﬁ"f'J.—c;}rf' =1y and o7 OF%
87, #2* > 0 is called a Nash equilibrium for the two-class two-processor load

sharing problem 1f

173



| vy 0w fde . - - it O
Jo(DS*, 83,8, " by ) < inf JH(dT.05,0] &5 )

3y - oL LR . ! iy 3 e
Jo (0%, 05, 8] dy") < inf JO(d2%. 65, &7, &5 )
5 5
Therefore each class will minimize its average job delay given that the other
class has minimized the average delay of its jobs.

Theorem 1: uniqueness

Let two classes of jobs o and 3 compete for two processors. Jobs from each class
arrive according to Poisson distribution and require service according to exponential
distribution. Each class tries to minimize the average delay of its own jobs. There
exists a unique Nash equilibrium for the above problem.

Proof: The action spaces ¢7+05 =1, 9%, 07 > 0 and fiﬁ’fﬂi*dif = 1. fﬁf, ::Dg = )
define a convex, closed and compact set. The cost function J¢ 1s jointly continuous
in all its arguments and convex in (¢, ¢S ) for each fixed value of (mfgﬁi) The
cost function J? is jointly continuous in all its arguments and convex in {r;:rfu:ﬁf)
for each fixed value of (0%, #%). The function J* + J? is continuous and convex
in (07, 05) for each fixed value of {qﬁf, cﬁ?) as well as 1s continuous and convex in
({I':J"f, m-ﬁ) for each fixed value of (9%, @5). Therefore the above routing game admits
a Nash equilibrium.

i
The Jacobian matrix with elements Eyrryv k=i By 1) =128 tactly
;9
diagonally dominant for all (9%, @3, gb-‘f,cf;ﬁ) such that of — ¢5 = 1, fi}f 4 mﬁ = Jis
0%, 0%, ¢85, #5 >0, Cr—2A%% @2 — M x gl >0and C,—A*%¢3 — NP x¢5 > 0. O

Next, we find this unique Nash equilibrium for the above load sharing game.

Define the auxiliary variables

rnfn#({ﬁ_ﬁt} C]; - OE — }.F _ }‘_ﬁ \/C‘i _ )'-.'{3 " d}ft
i 1 1 B X ) : ; / e
A VCO1 = A8 % ¢" +1/Ca — M x g7

1

4



(' —+ C: — A% — ;\d \,j'C:; — A% % @?.
. ;I‘n';j 'lv-f?f_l — A% % @?t T \f.(-!g — A% = E}gt

Then, the following policy will route the arriving jobs to the two processors

such that a Nash equilibrium is achieved:

If A+ X < (' + (s,

- T 13 -_.Ij#

then  of" = T = P‘frfx{fﬁ'?*}
ge. C1 = A%OT" . 3, ,ae
@ = - Ny(o7")

A5

accept the solution only 1f

Gy — Mg™ — [(C1 = M3e")(C, — MPgh") < e

Cy — NBg8* — \/(Cy — M62*)(C, — NPe5") < A°

Cy = X2¢5* — /(Cy = A2g5*)(Ca — Aogg™) < WP

Cy = XA205* — /(Cy — A=0g*)(C, — Modg*) < AP

If A%+ )\ﬁ E Cl T \/(Cl _— AQ}CE {Iﬂf{i AP + )‘-.'3 E Cl == \/(Cl = )\‘5}(:-'3,

then 02* =1, " =1

If 0<X*<C—/(Ci(Ce—X8) and 0< AP < Oy —\/(Cy — A*)Ch,

then ¢2* =1, ¢{*=0



=

[f 0L2° < 0= \/(C1 = X9)C; and 0< A < Cy = JC1(C2 = Ao,

then &%* =0, & =1

If M+ X <0 /CiC—X2) and X+ X3P < Oy — \/Cy(C = 29),

then ¢<* =0, ¢ =0

er A - )\H :_:’ '-(:'1 = V{ C'l = )‘\“]C’g and )\'S E C’g T 'l.vf{ CFI = /\\ﬂ}(igf

then gei= 1

3 (', — A° |
¢ = 1/-,‘5 - Nf(l)

accept the solution only if

A% < Oy = MRt —\/(C1 — MgE*)(C, — M)

If AE42P >0y ~ JOUC; —2%) and X 5 0= V(T3 = A=),
then o =10
#" == — NY(0)

accept the solution only if

AT < Cy = M — /(G = g™ )(Cr — M)
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If A% - }l'd :_:"_ 01 S "'u,f’l[ C.i =t A"i]{’_—rg and A° > CTE ez ".EI:C‘TI = .}nd}f'g,

then E’af' 1

Oy — AP
Pt = — s NS

accept the solution only if

A< Oy = X5t — 4/(Cy — A%657)(Cr — A=05")

If X+ X8>0 —/Ci(Cy = M) and X% 2 € — /C1(Cy — A8),

(.

then o7 =10

Y
et
- N2 (0)

_—
@

accept the solution only if

3 <Oy — Aogg* =1 [(Cr = Xag2*)(C — Aog5")

Of course, the Nash equilibrium load sharing fractions to the other processor

- : O O
are 03 =1 — of" and ¢, =1— 0] .

In order to find the Nash equilibrium load sharing fractions (¢%*, ¢7*) for the

first case of the Nash load sharing, we need an iterative algorithm to calculate

them. So, starting with ¢7*(0) = di"f'{{]) = 0, we iterate according to the following

algorithm:

| C, — AP (k) ’
otk +1) = 2 ve(gi(h)




In Figure 4.7, we show the average delay difference between the two classes

Jo* — J°* for fixed processor capacities (7, = 2.('5s = 1. fixed class 3 arrival rate

A = 1 and different class a arrival rates A®. When the class a arrival rate is
equal to the class J arrival rate \® = A = 1, then both classes have the same
average delay. When a class has larger arrival rate then it also has larger average
delay. For a very small class a arrival rate A*, we notice something peculiar: the
average delay difference curve is not monotonic with the arrival rate. This happens
because for these values we hit the boundary (o7" = 1), as we see in Figure 4.8.

In Figure 4.8, we show the Nash equilibrium load sharing fractions of the two
classes of* and r;i‘r‘f'. for fixed processor capacities, (', = 2,(y = 1, fixed class
3 arrival rate, \» = 1 and different class « arrival rates, A®*. We see that for
very small class a arrival rate A%, class a uses exclusively the faster processor 1
(¢ = 1). For equal arrival rates A® = A% =1, the Nash equilibrium load sharing
fractions intersect at the point ¢f* = cﬁf** As we increase the arrival rate they
depart each other to meet again when the arrival rate becomes large.

For comparison, we also show in Figure 4.9 the team optimum load sharing

fractions of the two classes, ¢7* and #°*, for fixed processor capacities, (|
2.C'» = 1. fixed class 3 arrival rate, A = 1 and different class a arrival rates, \*.
In this case, for a specific A%, we have a multiplicity of solutions {m‘f"ﬁf‘}. Also.
in the team optimum solution, the set of ¢7* intersect with the set ot @7 not in
just one point, but over a large range of values. Finally, the curve ¢of = f;f}fr is the
optimum load sharing solution when the two classes are treated as a single class.

Thus, we have presented 3 approaches for multi-class load sharing. In the
first approach, which is the usual approach [45] for the load sharing problem,
the two classes are treated as a single class and we give the load sharing policy
that minimizes the average job delay. In the second approach, which is the team
optimization approach for the multi-class cooperative load sharing problem, the
two classes are treated differently, however both classes cooperate to minimize the
average job delay. We give the load sharing policy that minimizes the average job
delay and further investigate the achieved team optimum solution. Note that the

first approach can be considered as a special case of the second approach. Finally,
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Figure 4.7: For the Nash equilibrium solution, the average delay difference between
the two classes J&* — JP* for fixed processor capacities C; = 2, C, = 1, fixed class
3 arrival rate A’ = 1 and different class arrival rates A“.
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Figure 4.8: Nash equilibrium load sharing fractions of the two classes ¢7" and ﬁ';j*,
for fixed processor capacities, C; = 2,(, = 1, fixed class 3 arrival rate, MWo=1
and different class o arrival rates, A“.



1.2

)\&

Figure 4.9: Team optimum load sharing fractions of the two classes, o7" and f;b’f',
for fixed processor capacities, Cy = 2,C, = 1, fixed class 3 arrival rate, \f = 1
and different class o arrival rates, A°.
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in the third approach, which is the Nash game approach for the multi-class non-
cooperative load sharing problem, the two classes compete for the two processors
and each class tries to minimize the average delay of its own jobs. We give the
load sharing policy that is the result of this competition and further investigate

the achieved Nash equilibrium solution.
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4.6 Example 2: Two-priority classes Two- processors

4.6.1 Introduction

[n this section, we consider a two preemptive resume priority class two-processor
load sharing (or routing) problem. An application is load sharing for a multipro-
cessor system, where interactive jobs (high priority) and batch jobs (low priority)
may use two processors for execution. Another application is routing, where voice
packets (high priority) and data packets (low priority ) may use two different links
for transmission between source-destination. We formulate this priority multi-
objective optimization problem as a non cooperative Stackelberg game between
the two priority classes.

When a high priority job is assigned to a processor, if there is another high
priority job there, then 1t is put in the queue. If there are only low priority jobs
there, then the low priority job 1s preempted and the high priority one starts been
executing immediately. When all the high priority jobs have finished receiving
service, then the low priority job that was preempted resumes and continues re-
ceiving service [256, 45]. The high priority class @ (leader) assigns its jobs to the
two processors, such that the average delay of its jobs is minimized. On the other
hand, the low priority class 3 (follower) assigns its jobs to the two processors. such
that the average delay of its jobs is minimized, after the high priority class a has

optimally assigned its jobs. Thus a Stackelberg equilibrium 1s achieved.

4.6.2 Stackelberg Equilibrium Solution

The cost function that we use for the high preemptive resume priority class « 1s

its average job delay [256]:

T 1 5 1
il | * 2 * i
- *( i 0
Jﬂ(@ﬂ?m&)_ J“Jv::n:'::av: + Q40X
EVRE o A% S A%
neCy peCly
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This 1s a strictly convex function with respect to (of. @5) over the convex space
of +o03 =1, of, of >0, for poC, — A% > 0 and p°C> — A%0% > 0.
Simularly, the cost function for the low preemptive resume priority class 3 is its

average job delay [256]:

i 1 * L3 k R af! 3 J BE e
JP(65. 95,07, 0,) = Py, _fGn B C' “f (;1) N

{1 Aﬁm?} {1 -Aﬂ@? }j@jl
! ueCh 1P CYy

(i:lﬂ r 1 )\ﬂ{ﬂg | }ha@,g |

 PRTUBC, T G, pBC, | (peChy)?
| }iﬁm? Aﬂ{ﬂ:‘,‘: Aj{i}d
(]l. — = )#{1 — 2 _ 2 2]
ey pueCy  pPCy

This 1s a strictly convex function with respect to (Gﬁ? 5= {P‘?) over the convex

| Aa&a Aﬂéﬂ Aaﬁﬁ
3 3 A3 & 1 1 1
space @7 + @, = 1, , @y .2 0 Tot 1 = > 0, 1 — — — > 0,
pEES e E R e s e C, e, P,

A% 0% A% 05 B ¢
o 2 >0,and 1 - —= — % 50

e usCy  pPC,

It is also a strictly convex function with respect to (@f + @5 ) over the con-

i +e3 =1, of, of 20,1 2 > 4l 1 i }‘%f:}[}
1|"-E:": 5 E—-CE (I-} {ﬂl} = . ol 5 - 1 = G - .
g P "R : ] peChy puely  pPCh

Aﬁm? & p Aﬁ¢
l-—2>0,and 1 - —2 ——250.

e Cly pueCy  pPC,

The overall average job delay 1s:

An : Aﬁ

3 .8
« JB(9%, 8%, 07, d5)

J(83, 85, 61, ¢5) = « J(eF, ¢7) +

A%+ \B A+ )8
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Theorem 1: ecristence

Let two preemptive resume priority classes of jobs compete for two processors.
Jobs from each class arrmve according to Poisson distribution and require service
according to exponential distribution. FEach class tries to minimize the average
delay of its own jobs. For the above load sharing problem, there exists a Stackelberyg
equiltbrium.

Proof: This 1s a two player non zero-sum continuous kernel game on the square.
for which the follower’s cost functional J-ﬁ(cﬁ?,@g,ﬁf,m?j} 1s strictly convex with
respect to the leader’s strategy over the convex space ¢ +0f =1, of, o3 = 0.
Therefore, it admits a Stackelberg equilibrium solution. O

The high preemptive resume priority class a solves the following problem:

minimaize

by o5

JH 0, 05) = — +f- e
(97 2) weCy — Aees  pe(Cy — A%05

with respect to of, @3

el

such that T +95 =1, of, o7 2 0.

On the other hand, the low preemptive resume priority class J solves the fol-

lowing problem: |
I L P 0

|

: L9 a0 oy 2
Jﬁ(‘i}?*e@g:ﬁﬁfj fi}g) s H M H I“L ) — 4
o ege Aot A3
(01 — P ) * (O — e - P )
MINLMIZE
C‘j }.a{jﬂn* }kaﬁﬁu*
fﬂg * [-_; N a Eﬁ T ctEE ]
" It e (4]
P Acr{ﬁcn :\E{Dg
(Cs — - ) = (O — L — 3 )
s pue H



with respect to

such that

Let define the auxiliary variables:

CY

3 =

[

X g
Iuﬂ

;{ﬂlﬂ]?t

(e

D+

Aggr Aoy

po P

(Iuc:]E
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Then, the following policy allocates the arriving jobs to the two processors such

that a Stackelberg equilibrium is achieved:

If
then

If

If

If

}.c:
T < Ci + Ca;
7,
A° — _, AP
Cfl‘“ﬂCHCgf:_—- and ('E-Vflfjéi_
(e ox
}\EE
Crl - g — — —_—
.o O o Vi
then of =55 = " * —— =
—_— i \/Cl " ‘v’rcz
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If — SCP G
then
— .
G _ A L E
If C2-Csx, =5 <— and C§ —C7 = | =5 < —
T NE T P oNeR T
)\ .
s PO 5 Vi
then @] = A_l - 2 = —
— L Ve +4/C
o w?
)'nﬂ Cﬁ

Iy — =07 =05 —

then o] =1

% cf
If — <Cy—C5 :
e .

then &7 =0

Of course, the Stackelberg equilibrium load sharing fractions to the other pro-
cessor are ¢5° = 1 — o7* and aﬁ*g* =1- {ﬂf'.
Substituting the Stackelberg equilibrium fractions into the average delay func-

tions, we have the Stackelberg equilibrium outcome of the game. Let a two pro-

cessor system C; > (. Then we consider several cases:
L 4

A
Case 1: If 'y — /(C;Cy < —, then the Stackelberg equilibrium load sharing
#ﬂ

decisions for the high priority class are given by:
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)Ila
¢+ Cy — —

goo _ B1 i v
1 — o o * e —
A° A VAL JVIE
A =
L@
By + ) e _
- (‘_1? 3 T e e . VJCE
=P S o Y
ik ,Ha

and the average delay of the high priority jobs is:

cf lcxm Cr % f I?_'_ VﬁJE 2
j(@1,¢2}= L 1@ —}l—ﬂ
AR (G + Cy——)
ﬁﬂ
The auxiliary variables become
% T
= 4 8, o) ek
N A

CEQ :{01‘1‘@2—_)“‘

s _ G 1 1 VO
Cy == +(C1+Co=A%/p%) x (= — —)
7 L Y ¢
Cls 1 1 B
C? == 3Ly e —A" [57) # {_E = =l ;_'v’ : T
pe pe o uet O+ v
Then the load sharing decisions for the low priority class 3 are:
X&)
3 CF : : T T V Cf
TN T 33 NN
R S \kfcl + \/Cg
Ae )P .
s G CI+CZ—F—F VCs
Mg = B NG = o
p? T
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and the Stackelberg equilibrium average delay of the low priority jobs is:

; . (vf€F +/C3)?
3 joxe Leoew PBe L Ds V1 Voo
JAer e b0z ) = AZ C. + (' X ).l’j)_
Iu_*j ull 12 . o Hd
(VO + V) = (67 VT + G V)
TR i, G s
—_— ¢ ; 5 b — n —
#;j LV & . LG (o

Case 2: I C; — V(1 (2 2 —,
then the Stackelberg equilibrium load sharing decisions for the high prionty
class a are given by: 0" =1, 037 =10

and the average delay of the high priority jobs 1s:

1
JE (7. @5%) =
{-1 ﬂi}- ) Hq(‘rrl_/\\n
The auxiliary variables become
/‘1'[:1
C; =Ci- ,u_‘:‘
C;‘ — O*:r
- 'y A XS
cl = —— = F
A el (pa)?
. C
C;, = —
#.
Then we consider two cases: L
1 T co )8
Case 2.1: If C* —C¢ | — < — and C5 —C{ = —= < —
\ Cs H \ C; H

then the Stackelberg equilibrium load sharing decisions for the low priority class

3 are given by:
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(,—— (1 +(0; = — — [a3
55 e 1 Y S L VG
A E 728 . a0
L }II_ ."nl’. Cl B 7] q'|,|..' ":E
i 1B
G
(h =0y — —— — P
o & _ ; ; T . VEs
CX X e84 /2
—Ilj -E' 'ivr 1. k 2

3 SCISY:
—x((+(y — — — —)
TE us P

S 22
A AC
g (Ch — =)=
Gf o AP
Case 2.2: If CY — C3 * J—L 2 —
Sl

then the Stackelberg equiﬁb}ium load sharing decisions for the low priority class
3 are given by: -:I'ﬁ’f' =1 @f' =0,

and the Stackelberg equilibrium average delay of the low priority jobs is:

JB(e%*, 3, 85", 5") =

4.6.3 Interesting Results

From the above Stackelberg equilibrium solution and outcome of the game, we
have some 1nteresting results:

Proposition 1: Conservation law

Let a two-processor system 'y > C4 that 1s shared by jobs from two preemp-

twe resume priority classes. Jobs from the high priomity class a arrive according to
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Powsson distribution with rate \* and require service according to erponential distri-
bution with mean u. Jobs from the low priority class 3 arrive according to Poisson
distribution with rate \° and require service according to erponential distribution
with mean p. Let also the total arrival rate ts constant A\ + \° = )\ = constant

and less than the mean service rate A* + X\° < u(C; + (). If each class tries to

minimize the average delay of its own jobs, then the average job delay 1s constant,

Le
J(2*, 62", 07, ¢5°) = constant
Proof: Case 1: If ('; — \/"C’l (' < —, then the average delay of the high priority
i
jobs is:

(VC; + V() 2
| A% \e
A“*(Cl+02—";]

and the average delay of the low priority jobs is:

- . . U"I '.I'_;
J'u('iﬁ?‘af}f’?*s . 1*3‘1}2*)

—

(VC, + VC,)?

A A A8
ux(Cy+Cy— —)x(C1 +Cy — — — —)
( oo
Finally, the overall average job delay 1is:
ie B 0P 9
J[d)?*g@g*,ﬁﬁf -_.Gt"g } = ( 1 vV ?) .
5 = _ N P A 0y ¥
Case2.1: If — < C; - y/CiCh £ —+— and C;—(C; ——)» I.'!—l R
H 1 e NG

1
then the average delay of the high priority jobs is:

1
pCy — A=

and the average delay of the low priority jobs 1s:

JHPT, 0y7) =
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\a
— 5 ETE yima
. ) L _IE_‘,_ ~ 1
JG{I,I’IE'T-! tjﬂ?* {ﬁf#‘ {Ef;'] = |I"'n.r"f 1 Yy _.} A - '“\a
Wa(Cr+Cr—=) MWx(C) - =)
u u

Finally, the overall average job delay is:

. Lo - s Tr_“‘ ‘;Crgz 2
J(87 05", 87", 85") = S },\a AT e - )\B
(A +A8 {0y + G — — = =} |
g
Case 2.2: If () — VC'1C7 > — + —,
TR

and the Stackelberg equilibrium average delay of the low priority jobs is:

I ] | (Y ﬁ* | L C

JE(%, 05", 45", 85") = : -

A% A% A

Oy — — ¥ (G oo o]
y TR
Finally, the overall average job delay 1s:
J(e, g, ¢t oy =
#1 g O oy el #Cl—-—/\

Therefore for constant A, the J(&¢*, ¢5*, cﬁf‘f*, tﬂf*) 1s also constant. O

The above proposition says that for equal mean service requirements for both
priority classes and constant total arrival rate the overall average job delay is
constant, i.e. it does not depend on the mix of high and low priority jobs.

In Figure 4.10, we show the Stackelberg equilibrium average delay of the high
priority class a, J%(o7*, #5*), of the low priority class 3, Jﬁ(cﬁ?*,qﬁg*,gﬁf',qﬁf'},
and of the system J(o3", 5", qﬁf', r;‘;‘rf'} versus different mixes of the high and low
priority arrival rates A_Z’ for fixed processor capacities C'; = 2,5, = 1, fixed total
arrival rate A* + )\* = 2.5, and equal mean service requirement of the high and the
low priority jobs 1/u* = 1/u® = 1. We note that the overall average job delay is
constant and independent from the mix of the high and low priority jobs.

Proposition 2:

Let a two-processor system 'y > (', that 1s shared by jobs from two preemp-

tive resume priority classes. Jobs from the high priority class a arriwve according
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Figure 4.10: Stackelberg equilibrium average delay J%, J® and J versus different
)‘ﬂ:

mixes of the high and low priority arrival rates —, for C; = 2,0, = 1, A* + \8 =

A8
2.5, and pu* = pP = 1.
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to Poisson distribution with rate A® and require service according to exponential
distribution with mean . Jobs from the low priority class 3 arrive according to
Poisson distribution with rate \° and require service according to erponential dis-
tribution with mean . Let also the total arrwval rate s less than the mean service
rate A\ + AP < u(Cy + (). Let also that each class tries to minimuze the average
delay of its own jobs.

If Cy — VC1Cq £ X%/,

V1

Vi + VC,

1.e. the load sharing decisions of the low priority class i1s independent of the

then &, =

arrival rates \® and 2. 5 e
—1, ¢ = =%. The proof
m i

Proof: When u® = p® = p, for Case 1, we have C} =
follows immediately. O

What the above proposition says is that for equal mean service requirements
for both priority classes, when the high priority class a uses both processors, then
the Stackelberg equilibrium decisions of the low priority class 3 are constant and
independent of the arrival rates (A%, \?). This result is not intuitive, because we
might expect that the load sharing decisions for the low priority class & should
also depend on the arrival rates (as it is the case for the high priority class o). It1s
also very important, because even when the arrival rates vary over time, the load
sharing policy for the low priority jobs remains the same (Figure 4.11).

Proposition 3:

Let a two-processor system C, > C5 that s shared by jobs from two preemp-
tiwve resume priority classes. Jobs from the high priomty class a arrive according
to Poisson distribution with rate A* and require service according to exponential
distribution with mean p. Jobs from the low priority class 3 arrive according to
Poisson distribution with rate \? and require service according to erponential dis-
tribution with mean p. Let also the total arrival rate 1s less than the mean service
rate A\* + AP < u(Cy + C,). Let also that each class tries to minimize the average
delay of its own jobs.

= AR

er b —3 — Cl = Crg, then (ﬁﬁlh
pE

. Crl
VO + VT
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for C;, =2,Co =1 0=Xand p* =2*pP =1, p* = pP =1 and 2= pu® = P = 1.

Figure 4.11: Stackelberg equilibriumn fractions ¢7* and ¢7° versus
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Proof:

)&a /‘,‘c:
Case 1: If C; — vC103 £ — and C'ﬂ—\_ﬂ: Ciy 5 =y
ue pe
X AP
When the arriving service requirement — — —; approaches the total service
pe o

capacity ('; + ('5, then the low priority class 3 uses both processors. The Stackel-

berg equilibrium load sharing decisions for the low priority class 3 approach

el "V/?I
NN T &
E&I_ﬁt } V{E
itk v’r’Z{T— _l_ bf:?f—
Act
Case 2: I Cy—~/(1Ch > =
@
Then we consider two cases:
ra VY
Case 2.1t HCY —C5 % 4|—5 &£ — and C3 —Cf'* -—E—{
\ C3 Ned T o]

then the Stackelberg ethbrmm load sharing decisions for the low priority class

B approach the following constant values:

=
- VC + V(0
45 v,
L : VT + V0,
The above proposition says that even for different service requirements for
A% 3P
the two priority classes, when the total arriving service requirement — +~ — ap-
ue

proaches the total service capacity C; + (', the Stackelberg load sharing decisions
for the low priority class 3 become constant and independent from the arrival rates.
In Figure 4.11, we show the Stackelberg equilibrium load sharing fractions of

both the high priority class «, ¢$*, and of the low priority class 3, ﬁb’f*, versus the
A% u® + AP [ P

system load , for fixed processor capacities '; = 2,y = 1, equal

Cy + Cy

arrival rates \* = \° and different ratio of the mean service requirement of the high

and the low priority jobs 1/u* =2/uP =1, 1/p*=1/puP =1, 1/uP =2/u* = 1.



For equal mean service requirements of the high and low priority jobs. we note
that when the high priority class a uses both processors (0 < ©f* < 1), then the
load sharing decisions ;" for the low priority class J are constant and independent

of the arrival rates A*, \°. For different mean service requirements of the high and
b T L e

C; + Cs

1, then the load sharing decisions ¢;* for the low priority class 3 approach the

low priority jobs, we note that when the system load approaches

same constant value as for the case of equal mean service requirements.

In this section. we have explicitly solved a two processor load sharing problem,
when two preemptive resume priority classes of jobs share the two processors. For
equal mean service requirements of jobs from both classes, when the high priomnty
class uses both processors, then the Stackelberg equilibrium decisions of the low
priority jobs do not depend on the arrival rates of the jobs. That means that even
if the arrival rates change during operation, our load sharing algorithm will still
perform "optimally” for the low priority class. Also, for constant total arrival rate,
even if we change the mix of high and low priority classes, then the overall average

job delay remains constant.

4.6.4 Discussion

Next, we discuss some other results that can be derived from the Stackelberg
solution of the two processor load sharing problem among jobs from two preemptive
resume priority classes.

1) Constant A“

Consider a two processor system C; < (', with fixed arrival rate of interactive

(high priority) jobs A* = constant. If this multiprocessor is also to be used by
batch (low priority) jobs and we want to secure an upper bound on the average
delay of batch jobs J? < JS, then we should restrict the arrival rate of the batch

jobs up to an upper limit. For example, if 4 = p” = pu, Case 1, then
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In Figure 4.12 we show the Stackelberg equilibrium average delay of both the

AN < (Cr+ Cy) = A =

higher priority class a, J*(o$*, 5" ), of the lower priority class 3, TP, 3", 7. n::-b;_}j* ),
and of the system J(¢f", 03*, @, cﬁr?*) versus the low priority class & arrival rate,
AP, for fixed processor capacities ('; = 2.y, = 1, fixed mean service requirements
1/p% = 1/p® = 1 and fixed high priority class a arrival rate A* = 1.0. So, for
example, if the average delay of batch jobs J” should be less than 10, then the
arrival rate of batch jobs should be \° < 1.71.

ii) Constant )\’

Next, consider a two processor system C; < (5 with fixed arrival rate of batch
jobs (low priority) A’ = constant. If this multiprocessor is also to be used by
interactive jobs (high priority) and we want to secure an upper bound on the

average delay of batch jobs J” < J['f, then we should restrict the arrival rate of the

interactive jobs up to an upper limit. For example, if u® = p? = u, Case 1, then

(VC, 4+ VC,)? 3
A RIS M
ux(Cy+C ——)*x(C; +Cy — — — —)
M TR

A MoV + V)
= IUL 1 E) 9 '\ ( 9 } j!;g
In Figure 4.13, we show the Stackelberg equilibrium average delay of both the

higher priority class a, J*(¢$*, @57 ), of the lower priority class 3, Jﬁ(gﬁ?‘ 05T DT cﬁf' ),
and of the system J(o¢*, ¢5°, @I{bg*} versus the high priority class a arrival rate,
A%, for fixed processor capacities C'; = 2,y = 1, fixed mean service requirements
1/u* =1/p” = 1. and fixed low priority class 3 arrival rate A® = 1.0.

So, for example, if the average delay of batch jobs J” should be less than 10,
then the arrival rate of interactive jobs should be A\? < 1.59.

199



20
JP
10 -
'}'#
J&*
e .
0 ;
0 1 2

Figure 4.12: Stackelberg equilibrium average delay J=,J? and J versus \?, for
Ci=2,Co=1,p*= P =1 X* =1.0.
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Figure 4.13: Stackelberg equilibrium average delay J*,J” and J versus \®, for
C1=2,C3=1, p* =pP =1, and )P = 1.0.
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iii) Constant A
Thirdly, consider a two processor svstem ('} < ('; with fixed total arrival rate
of both interactive and batch jobs A®* + A% = )\ = constant. We want to determine

what mix of interactive and batch jobs will secure an upper bound on the average

: ; A
delay of interactive jobs J* < J& as well as on batch jobs J” < J;. Let k = 5
be the mix of interactive over batch jobs. Then we can write the arrival rate of
: | 1
Interactive jobs as A® = e 1}. and the arrival rate of batch jobs as \° = R—T}
For example. if u® = y? = 1. Case 2.2, then
1 J& % gty
< = i
:C—HL = T 1=Jg*x(uCp = A)
Hq 1]
f ropi3 : 1
;L;“-‘(:*_- EJE? & & uC'y = |Jg :’;(Pcl —3*1)"‘?1;
(pC =TT )% (uCp — A) uCy = Jg = (pCr — A)?
In Figure 4.10, we show the Stackelberg equilibrium average delay of both the

high priority class a, J*(@{*, ¢57), of the low priority class J, JH g%, 92, Eﬁ;.fi??*?i%

and of the system J{qﬁ?*,mg*,@;,m‘j*} versus different mix of the high and low
X

priority arrival rates k = —. for fixed processor capacities ('; = 2,(; = 1. fixed

AP’
total arrival rate A = A®* + A\° = 2.5, and equal mean service requirement of the
high and the low priority jobs 1/u® = 1/u” = 1.
So, for example. if the average delay of interactive jobs should be less than 2

and the average delay of batch jobs should be less than 10, then mix of interactive

A
and batch jobs should be I < 2.8.

1v) Different Processor Rate Ratios

Finally, in Figure 4.14, we show the Stackelberg equilibrium fraction to proces-

A* fu® + AP /P
sor 1, of both the high and low priority classes versus the system load L &

for equal arrival rates A*> = )\?, equal mean service requirements 1/u® :C]iﬂg: 1
and different ration of the service rates of the two processors & —J0L W S T
1/2,1/3,1/4,1/5. :

When the service rate of processor 1 1s substantially larger than the service rate

of processor 2, (C'; = 5 % (y), then processor 1 is used exclusively for almost all
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arrival rates. When the service rates are ('; = 4’5, then for low and medium load.
processor 1 is exclusively used. but for heavy system load. processor 2 also 1s used.
When the service rates are ('; = 3=y, then the slow processor starts been used for
lower system load. When the service rates are C'; = 2 ('», then the slow processor
starts been used for even lower svstem load. When the service rates are equal
(', = (5, then both processors are used equally (07" = 03" = qiif' = mg’ = {J.3].
Now, when processor 2 is faster, a similar scenario happens, i.e. the faster processor
2 is, the more it i1s exclusively used.

In this section, we formulated and solved a priority load sharing problem. Real
distributed systems assign different priorities to different classes of jobs. in order to
give preferential treatment to some classes of jobs. Therefore, it 1s not meaningful
to optimize a single function over all different priority classes simultaneously. We
formulated a two-priority class load sharing problem as a Stackelberg game with
leader the high priority class and follower the low priority class. Furthermore, we
gave the explicit solution when two preemptive resume priority classes want to
minimize their average job delay. We found that for equal mean service require-
ments of jobs from both classes, when both processors are used, then the decisions
of the low priority class do not depend on the arrival rates, i.e. even if the arnval
rates vary, the same routing probabilities can be used for the low priority jobs.
Also, for equal mean service requirements of jobs from both classes, when the total
arrival rate of jobs is constant but the mix of high and low priority jobs varies,

then the overall average job delay remains constant.



4.7 Application to Virtual Circuit Networks

In this section, we apply the methodologies developed in the previous sections to

virtual circuit networks.

4.7.1 Cost Functions for Multiple Classes

In this section, we introduce several cost functions for multiple class virtual circuit
networks. C'onsider a system resource (node. link, computer site, etc.). Without
loss of generality, let its service rate be 1. Packets from class ¢ arrive at rate A7,

(Poisson) and require service (in FIF0 order) with mean z° and second moment

(z¢)?. Let also 7;; be a flow independent constant delay (e.g. propagation delay)
at resource ).

Let a new packet finds Nj packets in the queue from each class ¢ and =z
the residual service time of the packet in service. Let also z©™ be the service
requirement of the n'" packet from class ¢ at the queue. If we know all ", then

the waiting time of a new packet is

NEJ
W=xzo+) ) z"
i |

Let a new packet finds N§ packet in the queue from each class ¢ and zo the
residual service time of the packet in service. Let also z° be the mean service
requirement of packets from class ¢. Then the average waiting time of a new

packet 1s

W:Ig‘i‘z‘ﬁ'ré*ﬁ

Let a new packet finds V¢ virtual circuits from each class ¢ and zy the residual
service time of the packet in service. Let also for each class ¢, packets from each
virtual circuit arrive at rate » with mean service requirement z¢. Then the average

waiting time of a new packet is
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Let xq the residual service time of the packet in service. Let also for each class

c, packets from each virtual circuit arrive at rate r° with mean service requirement

 —

7¢ and virtual circuits arrive at rate ¥ (Poisson) and stay for a duration with
mean 1/6° (general distribution). Then the average waiting time of a new packet
1S

Ly

W = <

I—ZTC*%*F

The residual service time zo can be either measured (if we know the service
requirement of the packet in service) or estimated.

Let the packet in service belongs to class ¢, then the estimated residual service
(z°)2
2 = x¢

Let for each class ¢, there are N°¢ packets in the resource belonging to class

c. The probability that there is a class ¢ packet in service is N¢/(1 + »_ N*) and
K

time 1s T =

e,

N

(z€)°

e
*
N'k 2 % pc
P L] * L] # li: n ’
Let for each class ¢, there are V¢ virtual circuits in the resource belonging to

therefore the estimated residual service time 1s g = Z 4

g

1+

class c. The packet arrival rate per virtual circuit for class ¢ is r°. Then the

. ; 6 1 .
estimated residual service time 1s zg = = Z rox VE wlw)e,

sk

&

Let for each class ¢, the virtual circuit arrival rate (Poisson) 1s ¢, its duration
(general distribution) has mean 1/6° and its packet rate is »°. Then the estimated

N L] + ® ]' ‘q|r'c
residual service time is zg = = * Y 7% % — = (z¢)2.
g == ¢
C

Then we may define as cost function for class ¢ at resource 15 the weighted

average packet delay

[
¢ SR s, 20 \
95 = % [zF + W;; + 751



4.7.2 Cost Functions for Priority Classes

Let class a has non-preemptive priority over class J. By a sumilar development as

in the previous section, we have several cases for the average waiting time for the

high priority class o depending on our information:

AT
Jxl:?

Then we may define as cost function for class ¢ at resource 17 the weighted

average packet delay

(|

1] —
I ==t 75+ WS+ 7y

and the average waiting time for the low priority class 3 1s
1)

NE

o @
Wo=zo+Y 2%+ Y 27 + 72« Ve x WP x2% =
n=1 =]
o 8
ﬁq hq
L an | a.n
Wo = n=l n=’

1l —rex Ve xze
11)
Wﬂzmg—i-NS*F’T-I-Ng*g—r“*‘if'“ahwﬁtﬁ:r

to+ NG*T5 + No 2P

] —rex Ve x e

Wh =

1)
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We = ——
l_rjt‘iﬂxrd_rn*‘ia*:rﬁ
1v)
WE =g +r s 2 s Wosk T8+ rP xS « WP 2P + 2 S« W9 7% =
T e
To+ 7" x — % W™ x 2°
W* = -
77 = A
l -7 —= %28 =% % —xT
8 de

Then we may define as cost function for class 3 at resource :7 the weighted

average packet delay

. _
J:'j — —< % |:;r"3 -+ Lt’i T Tij
Similar arguments can be used for multiple non-preemptive priorities.

Let class a has preemptive priority over class 3. By a similar development as

in the previous section, we have the average packet delay for the high priority class

¥

Ng
[ =25+ Y 2o
n=1

T =g+ U

1)
Eru — I-E 'I' ;.h'rrg *F
:L}"'EI :FT L‘_j"cx
iii)
— " Spes
U=z + 7%+ VexU*x2% = [U* = —
Lo e Ve
T® = gz 4+ [J©
iv)
T
= (]
I vz
1 — Pﬂ W — #-;IT-
61:1:
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Te =78+ [/®

where 25 = A% = (#2)?/2 is the residual service time for class a.

Then we may define as cost function for class a at resource :j the weighted

average packet delay

Ck
[ 1] o —
Jii =~ [Tfi b ‘f-?]

\

Similarly, we have the average packet delay for the low priority class J

1)
o i
? Ng Ng .
TE - 0Tl r
[P =zg+ ) +) 7
n=1 n=1 3 5
_ r? = U
T8 =P 4+ U 4722 Ve x TP 78 = TP = —
] —r2x Ve x @
11
i3 3 AT o I]'{j _ﬁ
I_- —I.D _|__.\1'[:-:| Ia+3\‘Q*I
rd + UP

111 )
U8 =2y + 7%« Vo= P %28 + 7
3
{"3 11:1:]
] — 7% %« VE 78 — 7P x VP & 2
rd + [P

1v)
3
8 = =
_ ~ & ~8
T _ pP o4 J—ﬁ * TH

T8 = e

2 + A% % (2%)2)/2 is the residual service time for class 3.

where :z:g ={A" » (2%
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Similar arguments can be used for multiple preemptive priorities.
Then we may define as cost function for class J at resource ij the weighted
average packet delay

7 =20 (18 4 r]

1] )\ 17



4.8 Application to Integrated Services Networks

In this section, we apply the methodologies developed in the previous sections to

integrated services networks.

4.8.1 Cost Functions for Multiple Classes

[n this section. we introduce several cost functions for multiple class integrated
services networks. Consider a system resource (node, link, computing site, etc.)
1] with m;; servers, each at service rate (';;. Let also 7;; be a flow independent
constant delay (e.g. propagation delay) at resource 1. Packets from class ¢ arrive
at rate A7, (Poisson) and require service (general distribution) with mean 1/u. We
may take as cost function for class c at resource ¢j the weighted Erlang’s C' formula
(probability of queueing)

i

= - i) ;o
Jij = == * Po i

A
where
(20)™
Gy o may x pd
;! myj x pCij = DA
PQ,t = n Ty x
m=—1
5 HC':;;; L A Gy r . m;; x pC'; :
— n! m;;! m;; * uCy; — Z }\I-j
Ls

Consider a system resource (node, link, computing site, etc.) ij with my;
servers, each at service rate C;; and no buffers. Let also 7;; be a flow independent
constant delay (e.g. propagation delay) at resource 17. Packets from class ¢ arrive
at rate A, (Poisson) and require service (general distribution) with mean 1/u. We
may take as cost function for class c at resource 7 the weighted Erlang’s B formula

(or Erlang’s loss formula)



and as cost function for class ¢ along path =

/‘]'LC
J: - ‘|,:T = ]:[ B-,{J'{”L'J}
where =
£, A:;) ”
uC';
Mz
B;{mj} = -
W RAAE — Loy N
L ;‘*L‘j)
?‘l pC'y;
e n!

i

=

S

Considering other queueing models, we can also define other cost functions (see

next section).

4.9 Example

In this section, we consider the multi-objective routing problem in multiple class
Integrated Services Networks. Packets from the first class can be queued, while
packets from the other class are blocked. Therefore, the first class wants to mim-
mize 1ts average packet delay, while the other class wants to minimize i1ts blocking
probability.

We formulate the problem as a Nash game, where each class tries to minimize
its own cost function in competition with the other class. We derive the routing
policy for a two server parallel system and show the strategy and performance of

each class (Figure 4.15).

4.9.1 Introduction

Traditionally, there were separate networks (circuit/packet switched) for carrying
different traffic types (voice/data). In design and control problems of such net-
works, the goal is optimization of a single performance objective for the traffic
type carried by the network under consideration. For example, in circuit switched

networks, a voice call should be guaranteed an acceptable delay or else it should
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be blocked. The objective is then to minimize the voice blocking probabilitv. In
packet switched networks. a data packet may be queued in buffers on intermediate
nodes, thus the objective 1s to minimize the packet delay.

Today’s trend is toward a single high speed packet switched network, called
Broadband Integrated Services Digital Network (B-ISDN), that will support
multimedia traffic (voice, data, video, etc.) simultaneously. These multiple classes
of trafic will share the same network resources (buffers, switches, transmission
lines. etc.) for flexible and efficient resource sharing. However. each class has dif-
ferent and conflicting performance requirements and objectives to those of other
classes. Hence new methodologies are needed for network design and control prob-
lems.

In this section, we present an approach for the multiple class routing problem
based on game-theory and we explicitly solve the routing problem for two classes
of packets that share two links

One class of packets may be queued at the link buffers, while the second class
of packets are blocked when there 1s not enough space. The objective for the first
class 1s to minimize the delay for its packets, while the objective for the second
class 1s to minimize 1ts blocking probability. An application of this problem is to
data/voice packet switched networks, where data packets may be queued at the
links, while voice packets are dropped when they estimate that they will experi-
ence unacceptable delay. Another application is to ATM networks, where regular
packets may be queued at the link buffers, while marked packets are dropped when
there i1s congestion. Another application is for networks shared by different ven-
dors, where the first vendor has unlimited access to the links, while the second

vendor may use the links only if the congestion level is below a threshold.

4.9.2 Multi-server Queues with Blocking

We consider a queueing system of m servers that are shared by packets from two
classes a and 3. Class a packets arrive at rate A* (Poisson) and if all servers are
busy, then they queue in the single queue of the system. Class J packets arrive at

rate \? (Poisson) and if there are more than K packets (in queue and in service),
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Figure 4.15: Routing in a switch.



then they are rejected. Without loss of generality, let the service requirement
of each packet be exponentially distributed with mean 1/u and the rate of each
server be 1. A packet receives service from a server chosen randomly among the
free servers. Furthermore. for stability reasons it is assumed that the total arrival
rate is less than the total service rate: A* + A\’ = P[n < K| < m = p.

So, class a packets may be queued. while class 3 packets are blocked. Theretfore.
a reasonable objective is for class a to minimize its average packet delay. and for
class J to minimize its blocking probability.

For the above queueing system, we consider two cases:

i) A > m, i.e. the blocking threshold for class 3 packets is greater than or
equal to the number of servers.

1) A < m, 1.e. the blocking threshold for class J packets is less than or equal
to the number of servers.

1) K <m

Let first consider the case where the blocking threshold A for class 3 packets
is creater or equal to the number of servers m (Fig. 4.16). If upon arrival a
class 3 packet finds all m servers busy it may be queued if there are less than
K — m packets in the queue, otherwise it is lost. In this case, the threshold A is
selected such that the maximum (expected) delay of a class 3 packet 1s less than

an acceptable threshold 7%

maxr”

The maximum delay of a class 3 packet i1s when
upon arrival it finds K — 1 packets. It waits until all A — m — 1 in front of it in

the queue plus 1 packet in service are served at rate mu and then it enters service.

. . ot i, BERL ;
So. its waiting plus service time 1s + - < TEW = K <mp*xT°__.
mu H
The steady state probability that there are n packets in the system 1s
[ (X +2P\" 1
L n!
A%+ AP\ PR R .|
T =% ( * *k = % Mo miniﬁr
mi 1 m!
n—K 3y A—m gy m™m
xa b A* 4 \B 1
—_— - * *x — xmg A <n
 \mpu mu i m!

[
|_-_|-
fby |



}\CI:

Yy

Figure 4.16: A multi-server queue, where class a packets may be queued, while
class B packets are dropped when the number of packets in the system is greater
than or equal to A, where K > m.
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Then the probability that the system is idle is given by:

m =1 ,-:‘lmct—i—.j'ilj " 1
Tag = {Z ( ) K ——

i n!

n=0

A& )P (/\cx i1t /1‘:3) C—m
N TR —— —_— —
| (}hﬂ _L/‘h.‘j) 1 mg o mu \ mu
N Tl T A+ AP
U m (1 - (1 — |
m mu !

The probability that a class 3 packet is lost is the probability that there are at

least A" packets in the system:

o= A+ AE\ET™ e a8\ T
P[TE E }{J — Z Ty = ( ) e ( ) * o 0
n=HK

M L m! l—i
mu
The average number of packets in the system is:
20 m=1 aip Rige
_ A%+ A ) 1
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I'he overall average packet delay is:

N
A+ M= (1 — Pin> K]

T =

The average packet delay for class a is:

m—1 =0 s 1
Tﬂzle’ﬁ'n‘hv(n = 1+i)twn:*

mu 1

Il
m
)\ﬂ " Ad A—-m }.a. n A,'Ij R-m+1-
1—{1’{—m+1)*( ) +~ (A —m *( )
1 ™ mu
+— x - -
m s LD LAt
-] |
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o p m "2 )
e ()

Next, we also present the above performance measures for the special cases
A =m and m = 1.

Special Cases:

1) K =m

In this case class 3 packets can not be queued. So, if upon arrival a class 3

packet finds all m servers busy it is lost. Then the previously defined performance

Ineasures become:
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[n this case, there is only one server. Then the previously defined performance

measures become:
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Figure 4.17: A multi-server queue, where class a packets may be queued, while
class § packets are dropped when the number of packets in the system is greater
than or equal to /', where K < m.
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1) K <m

Let now consider the case where the blocking threshold I for class J packet is
less or equal to the number of servers m (Fig. 4.17). If upon arrival a class 3 packet
finds less than A servers busy, then it is starts been serviced. otherwise it is lost.
In this case, the threshold A" can be selected such that the maximum blocking of

i.e. P[n > K| < B®

maxr’

a class J packet is less than an acceptable threshold B? _,

ax?

Also. the service rate of each server must be large enough to guarantee acceptable
1

packet delay — < Tiﬂr
i
Then the steady state probability that there are n packets in the system is
BT L :
( ) * — * T n <A
1. n!
RN R, LR ABNE g ,
'}Tﬂ:{ —— * D Iiiﬂi:._m

L M n:
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Then the probability that the system is idle is given by
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The probability that class J packets are lost 1s given by
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The average number of packets in the system is
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The overall average packet delay 1s
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and the average class o packet delay 1s
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Next., we also present the above performance measures for the special cases
K'=4n and A = 1.

Special Cases:

1) A = m same as previously.

) K ==

In this case, class 3 packets may use only one server. A class J packet arrival

that finds another class 3 packet in service is lost. Then the previously defined

performance measures become:

= }Ln
A+ A8 mol e\ 1 YA ™™ e 4B 3
g = - * Z (—) = . T o o (—) * - ' * ;Tliu
It oo \ M (n+1) H H meoq
A mp

)
-2
e




|
li
=4
o
¥
—
o
B
|_
o
Lo
*
3 3
I \4|
'_I
) e -
|3_,..
0
"‘ﬂ-...______...-"
3
¥
| —
f

L S & n
' X8 je |
()f‘)m_l R mi mu
+ | — B * = | 1M = el 5|
{1 i m! 1 A ( e\~
. - | _
_ m ,m“) k)

o

4.9.3 A Game Theory Formulation

In this section, we consider a routing problem in a parallel system that is composed
of L multi-server queueing systems, each one similar to the one analyzed in the
previous section.

Let class ¢ packets arrive to this parallel system with rate A° (Poisson arrivals)
and may use any one of these L multi-server queueing systems in order to reach a
destination node. The fraction of class ¢ packets assigned to multi-server queueing
system 7 1s ¢° and the vector of these fractions for each class c is ®° = ... ¢f ...|.

%

There are m; servers at the queueing system :, each one with rate u; and the
blocking threshold is Aj;.

In this section, for simplicity, we consider two classes of packets,i.e. ¢ € {a,J}.
('lass a packets can be queued and therefore class & wants to minimize its average

packet delay, while class 3 packets are blocked and therefore class 3 wants to

minimize 1ts blocking probability.
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First, we formulate the problem as a Parecto game between the two classes.
where both classes minimize a single common cost function which is a combination

of their individual cost functions. The Pareto problem is

. t £ | T o 3 P | B | Tax A .Ij |pi1.-".p
MINIMIZE ‘E#:J (B, ®7)1P + (1 —€) = | JO(P7, @7 )7
with respect to (®*. )
such that D<e<]l, p=21

L
d =1, 6720 Vi
- 8
S i 3
Yol=1, & >0 Vi
=1
For p — o0, we have a minimazr problem, where we minimize the maximum

cost function. This leads to a conservative strategy, since we are not interested in

directly minimizing the cost functions of both classes. The minimax problem is

minimize maz {J“(@“E@ﬁ)”fﬁ(@“ﬁ@ﬁ}}

with respect to (P, $F)

L
such that Zci?f‘ =1, =0 Y2

E=1
L
Sl =1, #20 Vi
ye=1

Finally, we formulate the problem as a Nash game between the two classes,
where each class knows the cost functions and constraints for both classes. After
reaching a Nash equilibrium, no class will have a rational motive to unilaterally

deviate from 1ts equilibrium strategy.



Class a solves the following problem:

L
minimize JE( P, 'I)‘j"j — z o * e
T

with respect to ®°

L
such that E{bﬂ =1, o =20 V:

and class 3 solves the following problem:

minimize Jo (P~ ‘I”j Ziﬂ x Pln; > K]
with respect to  ®°

such that Zt‘;&f = 13 f;ﬁf >0 v

4.9.4 Numerical Results

Here, we consider a parallel system composed of two single-server queueing systems,
and class J packets are blocked when the server is busy,i.e. L =2, A =m=1.

Then the previously defined performance measures become:

M= p+ AP
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If ©¢ is the fraction of class ¢ packets routed to server :. then we can write

AS = A = of. where c € {a, 3}, 1€ {1,2}.

Formulating the problem as a Pareto game with &% = ®° = &, both classes
solve the following problem:

MINImMize

: 2 o, (A% + X9),
P = s * = t | i %
AR Eﬁﬂ?*{i [,iig—)t“*fi‘i i = (s + AP % @) .

with respect to @y, @,
2
such that E o; =1, @1, 92 =20

The first and second derivatives of J with respect to ¢, are

8J { iy 2% N x @y x g + (N % 0p)?
— = &% 3 . o
Jo, (= A x @1 )? 1 = (fy + AP = )
b (L) e (Ao 4 N85 22P1 2B+ N ()
(s1 + AP = @p)?
0*J [ 2 % A% % py 2% A% % 11y ]
, = €% R ,. T
(o )? (1 =A% %012 (1 + AP < 0y)?

2% (pq)*
o L — (N> 3+ AP ,
WS )* (p1 + AP = @y)3




Formulating the problem as a Nash game. class a solves the following problem:

9 3 S
L | | z 1 A7 0
MINLMLZE Je( @, 7% = S o, * — f c—
i= Hi = A% * OF o= (g = A = 0]")

with respect to o7, &3
2

such that Y of =1, &f, &5 >0
=1

The first and second order derivatives of J* with respect to of are

0J* 1y A % {:t':"f

E! A

00F (= A= 0%)®  py = (py + AP = o)

3= J= 2 % pty x A®

=

A@$)?  (pg — A x 09 )3

and the cross derivative of J* with respect to r:fi'f,czﬁ? 15

e J= AP

—

8d500%  (p + A% x 4))?

Similarly for the derivatives of J* with respect to ¢J and mf
Also, class 3 solves the following problem:

- d}a: N }1;3 * m-’f}

#i*}*ﬁ*@f

minimaize JB (P, ‘I’ﬁ fo}ﬂ

with respect to r;tr’f., {;bf_?

such that Z r;i}'f = fi‘rf, qﬁg > ()

=1

The first and second order derivatives of J? with respect to c:b'f are

0J" ;;.1*{,[51—}“*{;5?)

9! (g + A8 % ¢ )3



and the cross derivative of J® with respect to 7, qﬁa’f 18

@EJ*G - A * [l
Bp2APT (g + AP % ¢7)?

Theorem: ezistence & uniqueness

Let packets from two competing classes a and B arrive according to Poisson
distribution. They may be transmitted through multiple links with exponential ser-
vice time distribution. Class a minimizes its average packet delay, while class 3
minimizes its blocking probability. |
For the above routing game, there erists a uniqgue Nash equilibrium solution.

Proof: The action spaces ¢F+¢5 =1, ¢F, ¢3 > 0 and ¢*‘f+¢§f‘ =0l c;‘b"f} qbf >0
define a convex, closed and compact set. The cost function J¢ is jointly continuous
in all its arguments and convex in (¢%,¢%) for each fixed value of (¢7,¢5). The
cost function J# is jointly continuous in all its arguments and convex in (qir’f,, f;t:f)
for each fixed value of (¢, #3). The function J* + J? is continuous and convex
in (¢%, %) for each fixed value of (¢, #5) as well as is continuous and convex in
(¢7, ¢3) for each fixed value of (¢%, ¢¢). Therefore the above routing game admits
a Nash equilibrium.

9*Je

The Jacobian matrix with elements c,k=a,B8, t,7=1,21sstrictly

0504
diagonally dominant for all (¢, ‘é‘,q&f,qﬁé) such that ¢f + ¢5 = 1, o+ df =1,

%, 85, ¢, 83 20, Cr— XA gF — N xgf >0and Co—A* %95 — N x¢] > 0. O

The following policy gives the Nash equilibrium solution where class a mini-

mizes its average packet delay, while class 8 minimizes its blocking probability:

o 1 * ey * (g + AP) 3 1L
_ < -
If A% < puy \/ P PSY: and A < p, * Iy,

then

=1, ¢ =0
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. [y = 12 = (g + A3) : i
A S = V , — 2% A8 and A" < “‘\ I — 1.
then

{;Ij!].‘:l:t — U-_. I:I}L.Ir‘t — 1

a 3 d .-’: iy
If A% < 1y, A7 2 VM1 * (g — A®) — py and A7 > g = =TT
b Vg — Ae
then

Lore 1 5 M1 n ft1 + fg T+ AP 'uj;ﬁl x (jg — A9
@1 = L4 i = meg x

3 4 / .
A A Vit * (g — A%) + o

f1
A2« 0" A9« "

\! Ha g x (ptg + AP x iﬁgt} e * (g + AP = mf*j

If A% < pgy A% > (/g = (pa — A%) — py and A > p; =
then

b0, oot tathe X &
#1 — M : =

A8 AP

accept the solution only 1f

A% S g —

1 AP« )" M x gy

]
-— e —
I

i = : _ *
Vi s (p + M d") pax (pg + 3 0y)

If g = (pq + ALY g A,

}'ﬂ: }p # #'E*{aul'i')"ﬂ)
=~ K1 — H1 * .
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}mﬂ:_}ﬁz—\/ﬁl:!:#?*(#l.!hkﬂ}
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then
élzmwggJ(ﬁJ}
3w
p =1



accept the solution only if

fty — A% =07 >0, po— A% x05" > 0,

% flg = (fy — A% * 03"

Y P
_\ Iﬁig—;\&“‘ﬁjgt

= [

If jg = (g + A°) > g = A7,

re > f"lﬁilxﬁz*{#z*-}*ﬁ}
5= \' [ta + 2 * AR

and

AT 2 ftg — pg * 4 - 3
\ g2 = (g2 + A%) — gy % M
then

e argég;nﬂ J%(07,0)
R

accept the solution only if

Wi = AR 50, wp— A %02 >0,

V8 < [y % flg * (fly — A% * ‘i’%“)

ST om0

If all other cases
then

$%* = arg min J%(8%, 65°)

1 b330 1
¢ = argmin J°(67", 7 )
#7>0

accept the solution only if

—_— i

fa Lo = [yg + AP % r:ﬁ"?*) [y = [;Ll + A7 % *:i'?'f‘}

> ()



1 A8 x o \S 8yt
e py x (g + A= 0]") ok (g + AP % 057)

/"110.'

[/

L l }I_Jj (% )\.'ﬂ L

Dy g = (g — AT = 0F7)

AP > — Ii

“\ o — A% * @3" M

).1-8 ~ II'_-I'..I #“[.E.E *(JH_E — .}'1.“ #{ﬁg‘) ru-

= : —
p1 — A% * ¢F

Note that in the above policy the cases ¢** = ¢5" =1 and ¢** = ¢{* = 0 do

not appear. The following Corollary follows.

Corollary:

Let packets from two competing classes a and 3 arrwwe according to Poisson
distribution. They may be transmatted through multiple links with exzponential
service time distribution. Class o minimizes its average packet delay, while class
3 manimazes its blocking probability. For the above routing game, it 1s never the
case that both classes use only the same server simultaneously.

[n Figure 4.18, we show the Nash equilibrium fractions of*, qﬁf', for equal arrival

rates A* = \? and server rates u; = 2, s = 1. We notice that for light load, class
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Figure 4.18: Nash equilibrium fractions :;f:‘{",qﬁ'f', for equal arrival rates \* = )\°

and server rates u; = 2,4, = 1.
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a uses the faster server, while class J uses both servers. As the load increases,
both classes use both servers.

In Fig. 4.19, we show the Nash equilibrium fractions #%*, 7", for fixed class 3
arrival rate A\ = 1 and server rates u; = 2, s = 1. We notice a behavior similar
to that of the previous Figure.

In Fig 4.20. we show the Nash equilibrium fractions 07", qﬁf', for fixed class J
arrival rate A° = 0.1 and server rates u; = 2, s = 1. We notice that for light load,
class a uses the faster server, while class 3 uses both servers. As the load increases,
class a starts using both servers, while class 3 starts using only the faster server.

We further explore this last case where the class 3 arrival rate 1s very small.
We also make the first server much faster than the second server. In Fig. 4.21, we
show the Nash equilibrium fractions o¢*, qﬁf*, for fixed class 3 arrival rate A\° = 0.1
and server rates p; = 10,us = 1. We notice a behavior similar to that of the
previous Figure. For light traffic load, class o uses exclusively the faster server,
while class 3 uses both servers but with preference to the faster server. As the load
increases, class a continues using the faster server, while class 3 turns to the slow
server and it uses it without any interference from class a. However, for heavy
load, class a starts using both servers and this has an immediate effect on the
blocking probability of class 3.

In Fig 4.22, we show the Nash equilibrium class 3 blocking probability
P[Blocking]®, for fixed class 8 arrival rate A = 0.1 and server rates u; = 10, =
1. For intermediate load, class o uses only the faster server and class 3 uses only
the slower server. So, there is no interference between the two classes and the
blocking probability of class 5 becomes independent of the class a arrival rate A”.
However, as A% increases, class a starts using both servers and the class 3 blocking
probability starts increasing.

In Figure 4.23, we show the Nash equilibrium class a average packet delay, T,
for fixed class 3 arrival rate A’ = 0.1 and server rates u, = 10,5, = 1.

In this section, we have considered the routing problem in integrated services
networks, where one class of packets wants to minimize its average packet delay,

while another class of packets wants to minimize its blocking probability. We mo-
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Figure 4.19: Nash equilibrium fractions ¢$*, ¢; ", for fixed class 0 arrival rate MW=1

and server rates i, = 2, yu, = 1.
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Figure 4.20: Nash equilibrium fractions ¢2*, ¢7", for fixed class B arrival rate
A = 0.1 and server rates o= 2 s = 1.
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Figure 4.21: Nash equilibrium {ractions ci:{",qb’f', for fixed class 8 arrival rate

A\? = 0.1 and server rates g, = 10, = 1.
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Figure 4.22: Nash equilibrium class 3 blocking probability P[Blocking]?, for fixed
class [ arrival rate M = 0.1 and server rates u; = 10,4 = 1.
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Figure 4.23: Nash equilibrium class o average packet delay, T, for fixed class 0
arrival rate A = 0.1 and server rates u; = 10,19 = 1.
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deled and found several performance measures for a multi-server queueing systemn,
where the packets of one class may be queued, while the packets of another class
are blocked when there are more than A packets into the system.

Then we considered the routing problem through a parallel system of such
multi-server queues with blocking. We formulated the problem as a Nash game
between the two classes and found the Nash equilibrium solution.

Extensions of this work may be to consider an arbitrary network with multiple
classes, each class having different blocking threshold and mean service require-
ment. (Classes whose packets may be queued will want to minimize their average
packet delay, while those that are blocked will want to minimize their blocking

probability.
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Chapter 5

Dynamic Formulation

In this chapter, we develop three novel methodologies for the dynamic problem:

1) the dynamic team optimization methodology, ii) the dynamic Nash game metho-
dology, and 111) the dynamic Stackelberg game methodology. For each methodolo-
dology, we develop three alternative formulations of the joint problem, namely an
optimal control, a nonlinear complementarity problem and a variational inequality
formulation. For each formulation, we state the necessary and sufficient condi-
tions for existence and uniqueness of the solution. From Pontryagin’s maximum
principle, we also derive the form of the solution, that there should be flow only
on minimum length paths, to minimum length destinations, The length at each
system resource 1s appropriately defined for each case. Then we apply these three
methodologies to datagram, virtual circuit and integrated services networks. We
develop new dynamic queueing models for multiple classes and priority classes of
Jobs, as well as linearized approximate dynamic queueing models and Wiener pro-
cess models. We introduce several new cost functions and state constraints. We
explicitly solve an example for virtual circuit networks. We consider a virtual cir-
cuit network with Poisson arrivals of virtual circuits and packets, and exponential
service requirements. We want to minimize the expected cost of servicing or re-
jecting virtual circuits, minimize the expected cost of packet delay and maximize
the expected profit from packet throughput. We find the dynamic team optimality
conditions and we propose a state dependent routing and congestion control algo-

rithm. We investigate and compare (via simulation) this state dependent routing
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algorithm to the optimal quasi-static algorithm. We find that the more often that
we update the state dependent algorithm and the more recent information that
we use the better. When the updating period is not much larger than the mean
interarrival time of virtual circuits, then this state dependent algorithm achieves

smaller average packet delay than the optimal quasi-static algorithm.

5.1 Team Optimal Solution

[n this section, we formulate the dynamic joint load sharing, routing and congestion
control problem on the path flow space as a cooperative dynamic team game among
cooperative classes.

Customers of each class cooperate in using the resources of the distributed sys-
tem for the social welfare. The behavior of each class is similar to that of any
other class, that is to operate optimally for the average job. Ho [218] presents a
tutorial on team theory where the decision makers have access to different infor-
mation concerning the underline uncertainties. Leitmann [297] provides a rigorous
analysis of cooperative and zero-sum non-cooperative games.

Next, we give the definition for a Pareto optimal solution, for the joint load
sharing, routing and congestion control problem on the path flows.

Definition:

A vector (®*,¥*) € (RC,LS) s called a Pareto optimal solution for a C'-class

joint load sharing, routing and congestion control problem if and only if there exists

no other vector (®,¥) € (RC,LS) such that
Jo(®,¥) < J(®*,¥*) VYV (®,¥)e (RC,LS)

with strict inequality holding for at least one class c.

Define a global cost function

1/p

J(®,¥) = |> [w = J(®,T)P

.
where 1 < p < o0, chr—'l, w" >0 Ve
=1
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For p — ~, we have a munimar problem [122], since the cost function becomes

J(®,¥) = mf.x{wc « J(®,P¥)}

Another problem formulation is

such that
w'*xJ(Pe,¥)<e Ve

Furthermore, another problem formulation is

min J(®, ¥)
A

such that
J(®, ¥)< J(®,T) Ve

where J¢ is the maximum acceptable value for the cost function J¢.
Next, we give the definition for a team optimal solution (27|, for the joint load

sharing, routing and congestion control problem on the path flows.

Definition:

A vector (®*,W*) € (RC,LS) s called a team optimal solution for a C-class

joint load sharing, routing and congestion control problem if and only of

J(®*,%*) < J(®,¥) V(& ¥)c(RC,LS)

In the next sections, we develop three alternative formulations for the joint

load sharing, routing and congestion control problem.

5.1.1 Optimal Control Formulation

In this section, we formulate the dynamic cooperative joint load sharing, routing
and congestion control problem as an Optimal Control Problem (OCP). Algorithms

for solving OCPs i1s a thoroughly investigated research area and popular algorithms
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may be found in books by Athans & Falb [14], Lee & Markus [292], Plant 13811,
Sage [415], McCausland [325], Dyer & McReynolds [131], Kirk [254], Russell [412],
Gruver & Sachs [203], Sethi & Thompson [440], Knowles [262], Lewis [301] among
others.

Define the  Hamiltonian as

H(t,X.®,¥,P)=g(t,X.®, )+ P« f(t,X, $,7)

5 . ¢,k c.k e,k o,k T . . ot .
where P = ... Pii o - Pilig - Fofaq) - Pl ipreq ) * vector of costate variables.

Define also the derivatives of H with respect to the congestion, routing and
load sharing fractions at (¢, X*(t), ®*(t), ¥*(t).P(¢)) as

GH* GH(t,X,®,¥.P)

e £= 7 (6, (), B (t)F (), Pit))
Pofsd) Polsd

SH* GH(t,X,®,¥,P)

— = = [(6.X*(£),87(£). %" (1), P(t)
t;b‘rr[,n:,l’] EI}‘?T[-!EE]

oH* dH(t,X,®,¥,P)

= (6. (£),8* (1), B *(¢).P(¢))
¥lad] ¥[sd]

Define also the Lagrangian as

L (t.X.%,%.P,Q) =H(t,X,®,%,P)+

+ Z Z Qfsq) * |1 — Pofed) — Z rfed] | T

¢ [sdleSD® nlsdjellf

e

+Z Z Qfs.]* 1 - Z fsd]

¢ [s.]E5C [-'fJEDf:,J,

=3

with qﬁﬁ[sd:, Dotsd)r Visa) = 0 V wlsd] € IF s sd) € SD°, ¢

where Q = [... Qf,4 - @f,) ..] : vector of multipliers for the constraints of the

congestion control, routing and load sharing fractions.
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Define also the derivatives of L with respect to the congestion, routing and load

sharing fractions at (¢, X*(¢), @*(t), ¥*(¢),P(t)) as

oL* OL(t,X,®,¥T,.P,Q)

= = = (X %(6).8%(6), % (1) P(1),Q(1))
“olsd)] “olsd]

L dL(t, X, ®,¥,P,Q)

2 = y |(t,]{*(tj.@'{t},'1"{ﬁLP{tJ.Q{H]
Pl sd] P r[sd]

oL* oL(t,X,®, ¥, P.Q)

= 0 (6.X*(e), @ (¢), % (£), P(¢),Q(t))
Plsd] “[sd]

Theorem :

Consider the dynamic joint load sharing, routing and congestion control problem
in distributed systems with multiple cooperative classes, with fired initial time tg
and final time t;.

(@*(t), ¥*(¢)) € (RC,LS) s a team optimal solution if and only 1f it solves
the following Optimal Control Problem:

minimize /tf glt, X(t), ®(t), ¥(t))dt

to

with respect to  (®(t), ¥(t))
such that X(t) = f(t,X(t), ®(t), ®(t))
X(to) = Xo

(®(t), ¥(t)) € (RC,LS)

Proof: It follows from the definition of the team optimal solution.O

Necessary conditions for optimality are provided by Pontryagin’s Maximum
Principle. Besides the previously referred books on optimal control theory, some

other books that contain material on Pontryagin’s maximum principle are the

following: Hestenes [215], Arrow & Kurz [12], Tabak & Kuo [476], Boltyanskii
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58], Berkovitz [33], Bryson & Ho [79], Fleming & Rishel [162], Boltyanskii [59],
Leitmann [298], Macki & Strauss [315], Alekseev, Tikhomirov & Fomin [8].

Theorem : necessary conditions

C'onsider the dynamic joint load sharing, routing and congestion control problem
i distributed -systems with multiple cooperative classes, with fired initial time tg
and final time ;.

Let g(t,X,®,®), f(t,X,®,¥), be continuously differentiable with respect to
(X, P, ®) c (R",®,T) VitE [to.ts].

If(®*(t,X,), T*(t,Xo)) = (®*(t), ¥*(¢)) € (RC,LS) is a precewise continuous

open-loop team optimal solution and {X*(t), t € [to,ts]} ts the corresponding state

trajectory, then 3 P(t) : [to,t;] — R™ continuous and piecewise continuously

differentiable vector function, such that ¥V t € [ty, ts]:
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X*(t) = £(t, X*(t), @*(t), T*(t))

X*(t0) = Xo
e — QLa(t)] = @Z?ﬂ](t) =0 V[sd] € SD° ¢
bawﬂ[sd; l
oH — QL (t)] * _f:fsd;( ) =0 V¥ w[sd] € ITf, s lsd] € SD°, ¢
O sa “
HH" | |
— — Qp, ()] * wr:ti](t) =0 vV [.d] € Dy, 1 s.] € 8%, ¢
aﬂfsd | :
OH*
. — Qf a(t) >0 v |sd| € SD°, ¢
Sma[,d] led]( ) = [ ] ~
B Qfa(t) >0 V w|sd] € IIf, 5, |sd] € SD*, c
Ib7 1a) " o
aH — Qf,(t) 2 0 ‘cfrdlEDle]} 5. € 8¢, ¢
81‘}1:3&] | o

P(t) = —VxH(t,X*, ®*(t), ¥*(t),P(t))

P(t;) =0
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o a(t) + o a(t) =1 ¥ [sd] € SD%, c

olad]
:T[.sd]Eﬂ‘“ﬂ
Z vig(t) =1 V [s.] € 8¢, ¢
[.ﬂ']ED[EEI]
ﬂ[sd (\t W5d|( ) 2 0 v W[Sd] = Htrfsd}'-‘ [Sd] & SDC! C

tf;d](t)g[} H_ffrd]EI)r 1 ESC-} C

Proof: The Lagrangian 1s

g b

L=H -+ Z Z Q[Edl * (1 — (;b;[s{f:g Z d”ﬂ[ld] T

¢ [sd]€SDS i sdjEHf d]

.

—

£ Q=1 X Y

¢ [s]eSs D5,

"Wi't-h t-ﬁi[sd]? Eﬁ:r[sd]'-' ’wﬁ;d] 2 0 i'?f ‘?T[Sd} - ]'_'[fsd]? [SdJ - SD y C
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Pontryagin’s maximum principle necessary conditions are:

X*(t) = (¢, X*(¢), *(t), T*(¢))
X*(tﬂ) = :Xﬂ
oL | OH*
" r:-r () =0 . = 0)F ; c* (t) =
0P (40 Pofealt - 5%[5.;{ @hoalt)] = Filaa(t) =0
v [sd] € SD*, ¢
L* - GH
$ 8 (1) =0 = | = Q5 (t)| * 6,4 (t) =0
99 1ua Lk 097 (sd) S w1
vV 7lsd] € IIf,;, [sd] € SD*,c
OL* SH*
— xPia(t) =0 = —QF ()] *¥ra(t) =0
Byt ) i is)(t) o) (1)
V [.d] € Dfs_], s.] € 8¢, ¢
aL* JH*
= —Qf (t) >0 Y lsd| € SD°
0 L) Te(t) 2 sdl € €
aL* OH*
>0 = a1t v wisd| € IL 5, [sd] € SD°,
0P (aa) 5"4’);{3&] Ualt) 2 [sd] rar 18] € ‘
oL* OH*
>0 = —Q5(t)>0  VY[d eD:, [s.) €S, c
OYf,a Mg A € Diyy, Lo
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P(t)= —Vx H(t.X*, &(t). €*(t),P(t))

P(t_f:l =N
oL* x
7y 0 = &5f,q(t) + Y. dalt)=1 V[sd] €SDS, ¢
" -ili] ?r[sd]EH[cld]
gL
= — (0 = Z :,-“F;d](t)_l ¥ [s.| € 8% ¢
Qﬁs-] -d)eDs,
B3t (t)y 0% (t) > 0 v n[sd] € TIf,y, [sd] € SD°, ¢
u:‘[-‘;d](t) =1 v [.d] € D*?”, s.] € S¢, c4
o |

Theorem : suffictent conditions

C'onsider the dynamac joint load sharing, routing and congestion control problem
in distributed systems with multiple cooperative classes, with fized inatial time to
and final time t;.

Let g(t, X, ®,¥), f(¢t,X,®,T), be continuously differentiable with respect to
(X,®, ) e (R*,®,F) VtE [ty ts].

Let (X(t),®(t), T(t)) € (R*,RC,LS) s an admissible pair for the Optimal
Control Problem and H(t,X,®, ¥,P(t)) ts convez 1n (X, ®,¥) € (R",RC,LS),
Yt € [to,t4). If 3 P(t) : [to,t;] — R™ continuous and piecewise continuously
differentiable vector function, such that ¥ t € [to,14]:
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| OH ) |
Haoe o Qﬂd}(t) * iﬂi[’d](t) =) v [Sd] c SDC, o
If'I:Ir:.r[.s-::lf]
OH )
5or — ~ Qa(t)| xipg(t) =0V nlsd) € I, [sd] € SD,
¥ | sd] '
O0H ) _ .
_@ﬂ:id] B Q[-“](ﬂ ® ﬂr[sd](” =0 v [r:f] = D[L}! [S] e SC? -
OH
—O° . (t)>0 V (sd SD*.
061 Qfa)(t) = [sd] € 5
5H |
{f} o o Qf,d](t) }’_ 0 v ﬂ*[sd] — ]'_‘[Fsd]? [Sd] c SDT.':' 3
(i}‘.rr[ad]
oH
G-~ Q)20 Y[deDi, [s]es, c
- [sd} !

P(f} — _?XH(tiii'i’(t)i ‘i‘ff),P(f))

P(tf) =0
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rlsdlely, ,
S drglt)=1 V [s.] €8¢, ¢
dJeDs, |
%E[m}(f]ﬁ ‘ii[ad](t) 2 0 Vv w[sd] € IIf,y, [sd] € SD*, ¢
‘L'T“:sd](f) >0 v [.d] € Df, ;s [s.] € 8¢, ¢

then (X(t), ®(t), ¥(t)) s optemal.

Proof: The proof is similar to that of the necessary conditions. In addition, we

use the convexity of the Hamiltonian with respect to the state and controls.C

Theorem :

Consider the dynamaic joint load sharing, routing and congestion control problem
in distributed systermns with multiple cooperative classes, with fired initial time tg
and final time t5.

Let g(t,X,®, W), f(t,X,®,P), be continuously differentiable uath respect to
(X,®,%) e (R",RC,LS), Vtc< |ty ty].

If (8¢, X, Xo), T*(t. X, Xo)) = (®*(¢), T*(¢)) € (RC,LS) is a closed-loop
memoryless team optimal solution such that (®*(t,X,X,), ®*(¢t,X,Xo)) is con-
tinuously differentiable with respect to X € R™, V ¢, t € [to,ts] and {X*(t), t €

[to,ts]} is the corresponding state trajectory, then I P(t) : [to,tf] — R", continuous

and piecewise continuously differentiable vector functions, such that V t € [to,ty]:
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X"(to) = Xo
| OH"
e~ Qha(t)] ¥ () =0V [sd] € SD",
: ma[ad] | )
| sd] |
aH*

6} fye o QF”H] " ﬂ'f:dj{t) — U H'j [.d} - Dr"], {S,] - SE& C
| 9% sd] _

— G qlt) =0 v [sd] € SD°, ¢
8{;};[.!&} Q[_jd]( ) T L |
aﬁ? — Qfsd](t) :_::' 0 i W[Sd] - Hfsd]} ESC{] = SDE} C
Prlsd)
H* :
8. - QL) =20 vV [.d] € Df,;, [s.] € 8¢, c
Of & :
¥lsd)

P(¢t) = —VxH(,X*, &*(¢,X*, X,), T*(¢,X*, X,), P(t))

P(tfy) =0
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Sa(t) + ) ialt)=1 V[sd] € SD°, ¢

m[sd]€Ilf
[d]EZDFL] Uiy (t) =1 v [s.] €S, ¢
ohag () 51,a(t) 20 V mlsd] € Hfﬁd]‘, sd] € SD°, ¢
Uiy (t) 20 v [.d] € Df, ), [s.] € S, ¢

Proof: The proof is similar to that of the open-loop solution.d
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5.1.2 Dynamic Programming Formulation

In this section, we formulate the dynamic cooperative joint load sharing, routing
and congestion control problem as a Dynamic Programming Problem (DPP). Al-

gorithms for solving DPP’s may be found in books by Bellman [31], Howard [220],
Kumar & Varaiya [274] Bertsekas [37], Ross [406] among others.

Theorem :
Clonsider the dynamic joint load sharing, routing and congestion control problem

in distributed systems with multiple cooperative classes, with fired initial time tq

and final time t5.
(®*, ¥*) € (RC,LS) is a team optimal solution if and only if the following

conditions are satisfied:
t - i
1) / f g(t,X*(s), ®*(X*(s))), ¥*(X*(s))ds = constant

to

i7) 3 X*, P absolutely continuous such that:
H (t,X*(t), 2*(X(t)), ¥*(X(t)), P(t)) — He(t, X(t), B(X(t)), ¥(X(t)), P(¢)) +
+ P() = (X*(t)-=X) <0 ae te€tots], V¥ XeR", ($,¥)<(RC,LS)

P (t5)*(X*(t;)-X)<0 VXeER™

Proof: Substituting the state equation in ii) and integrating it, we get the

definition of the team-optimal solution. O
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Definition :

Consider the dynamic joint load sharing. routing and congestion control problem
i distributed systems with multiple cooperative classes. with fized wnitial time t,
and final time t;.

U'nder the memoryless perfect state or closed-loop perfect state information

structure, (®, 'I’] c (RC,LS) constitutes a feedback team optimal solution solu-

tion if and only 1f 3 V' : [to, t;] * R® — R satisfying the following relations:

V(t.X) = [“' 9(s,X*(s), ®*(s,1(s)), ¥*(5,1(s)))ds <
< [’g(s,x*t B(s,1(s)), ¥(s,1(s)))ds
v (®(s,1(s)), ¥(s,1(s))) € (RC,LS), X € R"
such that Vs & [¢, tf]
X(s) = f(s,X(s), ®(s,1(s)), ¥(s,1(s)))
X(t) = X
X'(s) = f(s,X*(s),®*(s,1(5)), T*(s,1(s)))
X*s) = X

where I(s) = {X(s), X0} or I(s) = {X(7), = < s}.

V(t,X) is the value function associated. with the optimal control problem of
minimizing J over (®, ¥) € LS,RC).

The concept of feedback team optimal solution means that if (®(s),T(s)) 1s
a feedback team optimal solution to the problem during to,tf], is also a feedback
team optimal solution to the problem during [t, /], with the initial state taken as
X(t). So, feedback team optimal solution strategies will depend only on the time

variable and the current value of the state, but not on memory.
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Proposition :
Every open-loop team optimal solution for the dynamic joint load sharing. rout-
ing and congestion control problem among cooperative classes 1s also closed-loop

teamn optimal solution.

Proposition :

['nder the memoryless (respectively, closed-loop) perfect state information struc-
ture, every feedback team optimal solution for the dynamic joint load sharing, rout-
ing and congestion control problem among cooperative classes 1s a closed-loop no

memory (respectively, closed-loop) team optimal solution.

Theorem :

Consider the dynamic joint load sharing, routing and congestion control problem
in distributed systems with multiple cooperative classes, with fized initial time tg
and final time t¢.

Under the memory perfect state or closed loop perfect state information struc-
ture, (®, ‘I’) € (RC,LS) provides a feedback team optimal solution if 3V : [to, ts]=
R"™ — R continuously differentiable satisfying the partial differential equations

oV (t,X) | {(?V(t,lﬂ() }

T — *f t,X.. . Es ,‘I’,‘I‘ =
at c@,@;ﬁ?}%ﬂ.m} 0X e Ry By gl X )
V(t.X « - n :

o éx ) £(8,X, % (1, X), B* (£, X)) + ¢(t, X, 8° (¢, X), ¥* (£, X))

The above equation is called Hamilton-Jacobi-Bellman (H-J-B) equation.

5.1.3 Nonlinear Complementarity Problem Formulation

In this section, we formulate the dynamic cooperative load sharing, routing and
congestion control problem as a Nonlinear Complementarity Problem (NCP).
Define the vector of class load sharing, routing and load sharing fractions as

well as Lagrange multipliers:

Z(t) = o B8] o Birsq sss Dfigi(F) v Wlplt) oo QE5(8) o]”



and the vector of class derivative of the Lagrangian with respect to the con-

gestion control, routing and load sharing fractions as well as Lagrange multipliers:

| i OH OH
VL(t,X(t),Z(t)) = |.. (%‘m —ngsd](t)) (M[ ]—Q‘j,[,d}(t})
L ol | ad

1= Sag®) = D g ] -
#Ead}EHF!d]

oH '
-(ﬁ ,c —Qr,,;m) S D SRR ¥ )
Visd] d]eD,

]

Theorem :
Consider the dynamic joint load sharing, routing and congestion control problem
in distributed systems with multiple cooperative classes, with fized initial time to

and final time t;.

Let g(t, X, ®,¥), {({,X,®,¥), be continuously differentiable with respect to
(X,®, %) € (R",®,¥) Yt € [to,ts]. If H is differentiable and conver in
(X,®,¥)c (RC,LS), VYtE€ to,ts],

then (®*(t), ¥*(t)) € (RC,LS) is a team optimal solution if and only if it
solves the following Nonlinear Complementarity Problem V t € [to,t4]:

VL(t,X*(t),Z*(t)) *Z*(t) =0

VL(t,X*(t),Z*(t)) >0

Z*(t) >0

X (t) = £(t,X*(t), *(t), T*(t))

X*(to) = X

P(t) = —VxH(t,X*, &*(¢), T*(¢t),P(¢))
P(t;) =0

Proof: After some algebraic manipulations, we find that the NCP: VL(Z(¢)) =
Z(t) =0 VL(Z(t)) 20 Z(t) > 0 with Z(¢) and VL(Z(t)) as defined above, is

equivalent to the Pontryagin’s maximum principle necessary conditions. O
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5.1.4 Variational Inequality Formulation

In this section, we formulate the dynamic cooperative load sharing, routing and

congestion control problem as a Variational Inequality Problem (VIP).

Define the vector of class congestion control, routing and load sharing fractions:

. : T
(B(2), (2) = [+ E5pui(t) v D pag(t) oo UEug () o]

as well the vector of class derivatives of the cost function with respect to the

congestion control, routing and load sharing fractions:

0H
0

VH(t,X(t),®(t),¥(t),P(t)) =

Theorem :

2

r[:djEnfldJ

0H OH
005,a Oy

=

Consider the dynamac joint load sharing, routing and congestion control problem

in distributed systems with multiple cooperative classes, with fired initial time t,

and final time t;.

Let g(t,X,®,¥), f(t,X,®,¥), be continuously differentiable with respect to
(X,®,¥) € (R",®,¥) VYVt € [to,ty]. If H 1s continuously differentiable and

conver in (X,®,¥)c (R",RC,LS), Vte lto,ts),

then (®*(t), ¥*(t)) € (RC,LS) s a team optimal solution if and only if it
solves the following Variational Inequality Problem Y t € [to,ty] :

VAH(t, X*(t), ®°(2), ¥*(t), P(2)) = (2, ®) — (2°(¢), ¥*(t))) > 0

v (®,¥)e (RC,LS)
X*(t) = £(¢,X*(t), ®*(¢), T*(¢))
X*(to) = Xo
P(t) = —VxH(t,X*, ®*(¢), ¥*(¢),P(¢))
P(t;) =0



Proof: If (®(#), ¥(t)) is a local minimum for the following minimization prob-

lem
inimze [’ g(t. X (), ®(t), T(t))dt
with respect to (tIn’(t), P(t))
such that X(t) = f(¢,X(t), ®(t), T(t))
X(to) = Xo

(®(t), ¥(t)) € (RC,LS)

and g is a continuously differentiable convex function over the nonempty convex,

closed and bounded set (RC,LS), then ¥ ¢ € [to, tf]:

Y, 2. { . * (P51ed] — Posa)(t)) +

¢ [sd]eSD* a¢§[ad]

oH*

>

* (Drpsd) — Prisq)(t)) +
rlsdleTlt,, O (sd]

oOH*
aw.c.!d]

« (F w[ad](t)} >0 V(& ¥) e (RC,LS)
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Another equivalent VIP formulation is the following Theorem:

Theorem :

Consider the dynamic joint load sharing, routing and congestion control problem
i distributed systems with multiple cooperative classes, with fired initial time t,
and final time t;.

Let g(t, X, ®,¥), f(¢,X,®,¥), be continuously differentiable with respect to
(X,®,¥) € (R",2,¥) VYVt € |to,tf]. If H is continuously differentiable and
conver in (H, ®,¥) € (R*,RC,LS), V¥ t¢& [t t4],

then (@*(t), ®*(t)) € (RC,LS) s a team optimal solution if and only if it
solves the following Variational Inequality Problem WV t € [tg, t4]:

VL[, X*(t),Z%(t))*x(Z—=Z*(t)) >0 VZ>0
X*(t) = f(t,X*(¢), ®*(¢), T*(¢t))

X*(to) = X,
P(t) = —VxH(t,X*, &*(t), €*(t), P(¢))
P(t_f) =0

The NCP: f(z*)*xz*=0 f(z*)>0 z*>0
and the VIP: find z* such that f(z*)*x(z —2z*) >0 Yz > (

are equivalent.O
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9.1.5 Maximum Principle for Separable Cost Functions

In this section, we derive the first order necessary conditions for a team optimal
solution on the path flows, when the cost function of each resource depends only
on the flow on this resource.

According to the team optimal solution definition, each class ¢ minimizes its

cost function g given the optimum decisions of all other classes.

2
b /‘f g(t, X (¢), ®(1), ¥(t))dt =

Z/” 9ii(t, Xij(t), Aij(t)at +

1] to

K th:fgi(fﬂxf(t%w))dt -

L,
+ Z/: Golsd)(ts Kofsd)(t)s Aofsa)(t))dt +
[sd] ©7°

Ly
+ Y gt Xg(t) Apg(t))dt

v W L
i

with respect to  (@(t), ¥(t))
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such that

k

Xiat) = gt X(t). 8(¢), (1) Vij, [sd] € SD, &k
X5 q(t) = 5,46, Xi(t), B(t), B(1)) Y i, [sd] € SD*, k
Xk a(t) = (. Xona(t), 8(), T(t)) VY [sd] € SD*, &
Xfana(t) = fapgt:Xia(t), 8(¢), ®(t)) V[sd] € SD*, &
EXFalte) = Xipao v ij, [sd] € SD*,
Xialte) = X, V1, [sd] € SD*, &
Xowag(te) = X0 ¥ [sd] € SD*, &
Xtapate) = Xfynae Y [sd] € SD*, &k

Sopa(t) + D Pig(t)=1 V[sd] € SD

[sd]eIlf
> wEa(t) =1 Vv [s.] € S°
Ld]eDf,
Bosd)(t)s Prpea)(t) =0 vV wisd] € IIf, , [sd] € SD°
Yha(t) >0 v [.d] € Df,;, [s.] € S
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Pontryagin's maximum principle necessary conditions are YV t € [tg,ts]:

Xk a(t) = 5 0 (6X5(0).80(8), B (t) V5, [sd] € SD*, &
Xk () = 5,46, X5 (), @°(t), T*(t)) v i, [sd] € SD*, k
Xf;[;d( ) = (6, X0 (1), B°(2), ®*(t)) VY [sd] € SD¥, &

X (t) £ (6 X7 g (), @°(¢), ¥ () V¥ [sd) € SD, &

Xialt) = X0 v ij, [sd] € SD*, k
Xiglte) = Xiae Vi, [sd] € SD, k
Xhalte) = Xia0 VY [sd] € SD*, k&
Xtupa(te) = Xfagnao V¥ [sd] € SD*, k
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[ Ogpa(t. X3, (t). B%(2). E*(2))

0Dy ya)

=5 Zpi[:d] * ?qﬁ‘ fﬂ[sd](t Xﬂ[!d( L‘Iﬂ{t)* ‘P‘{t”_

fm'](t] * ;rad}{t) =0

Y [sd] € SD°, ¢

_|_

Z 0g:;(t, X5;(¢), 2*(¢), ®*(¢)) + Y Ag:(t, Xi(t), ®*(¢), ¥*(t))
. 17 'ﬁ{i}wlsd 1 ﬁqD‘:rEJd]
30 5 S Peat)* Ve Loa (L X2, T (0)+
YT SPE (1) = Vg, By (1 K5 (2),2°(0), 2°(0))-
ke [ad‘] 1
—Qf, ()] *x 077,4(t) =0 v wlsd] € IIF 4, sd] € SD°, ¢
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5 28t X5(0, 80, B(0) - 0alt, Xi(0). B°(4), @*(8)
“[s

|

5 M = ol ]
+5 Iisa(ty X3ppgy(2), @7(8) *(2))  Ogra(t, X[ y(t), B*(¢), T*(2))
aﬂlj [sd] aﬂ[ad]
ZPEC *?‘J[‘:ijfs:d](t?X:j(t)‘@*(t)‘- ‘I"(t}}_F

L.!u'] 1]

+§ > D P (8) < Ve B8 (£, X5 (1), %(8), T (1)) +
[sd] !

+2Pksd] * II1T':’7"-{'[ ]fﬂr#d(t X*[ad( )?‘I'*{t}ﬁlpl(t))_k

_ZZP {t #Vﬁ,: fk d}(t X‘d] t), ®(t), ¥(t))—

vV [.d] € Df,;, [s.] €8S, ¢

-+



Bgteat(t X g, (£). B (1), T*(8))
aqﬁ;_:d]

——

ZPo[ad -d}::m [sd(t Xn[sd]( J 'I'.( )s Wt ))

-Qfﬂ]{t] >0 vV [sd] € SD€, ¢
8gi;(t, X5(¢), 2*(t), T*(¢ 0g;(t, XI(t), ®"(t), ®*(t))
—|— —+-
z'zj @d};‘ ad] Z a{ﬂw ad]
T y‘ Y y:P”[_, d] 1,r[ ]fi[, d' t{ :_f,r(t)'*@*(t):‘l"(f})"'
ko [a'd'] 1

+5 T TP (t) = Ve g fanl6 Ki (0, 2°(6), 2°(0)-

ke Lsd] 1

Q¢ 4(t) >0 V n[sd] € IIf, ,, [sd] € SD°, ¢
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3

'],E I
1) dv [ad]

+§ghd](t~1{;|,d](t)~ @‘(t)* 11,.[‘{)} i

aw [cs d|

*TY‘TP ' #ch fjlr

i U[-‘ .' “lad]
k [Jd] 1]

DIDIDI L INOEL N3

k [_,d] 1

0gij(8. X5, (t), B (1), T*(t) | gilt. X1(1). *(2), W*(¢))
I

——

-
Ol

!

D1t X7 4(8),8*(1), ®* (1))

81&' i:a d]

5 Vol ](t‘x:‘;(t)u 'I'*(t)'r ‘F.(f)}‘F

(8 X7 (t), 27(t), ¥7(t))+

+ZP9[¢£ o w[c fﬂ[sd](i X;.m']( J!‘I,.(i)v'l"(t]J_'I"

+EZP[d[ad * Vg, fakd]

~Qf,)(1) 20 v [.d] €

(tﬂxr_d}(t\]‘: 'I‘J‘(t)}i’*(t]}—

Df,y, [s.] € 8 ¢

+



PEa(t) = Vi gi(6. X5, (1), B (1)) -

17| sd)

~% T Pifa(®)* Vg Byt X 70, ()

o 7[ sd]
¥ i, [sd] € SD*, k
Piri(t) = —Vxe gilt, X}, @°(2), T(t))-

i[ 3]

=3 SR (8 Vs £7 (6, X0,87(8), B7(2)

n (s e
Vi, [sd] € SD*, k

Pira(t) = —Vxr  gua(t, X, 8°(), T5(t))-

of s d]
‘ZPG[,.&} * Ve Lot Xopa, 27(2), ¥7(¢))
V [sd] € SD*, k&

d][sd](t} = _vl{* gf-d](tﬁxr,d]w@t(t)u‘Iﬂ(t))_

[-d]{ad]

_ZZP ) * VXt L a(t X, @7(2), B(2))

V [sd] € SD*, k
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“::"fﬁfm}
D Yi(t) =1 V [s.] € 8% ¢
4eDp,
Gotaa)(t)s 9510q(t) 20 vV wlsd] € ITf, ;) [sd] € SD<, c
Uig(t) 20 Vv [.d] € Df,;, [s.] € 8%, ¢

The partial derivatives of the cost function g(¢,X,®,W¥) with respect to the
path fractions ¢, , can be written with respect to the link flows A% and node

flows AS:

0gij(t, Xij, 8, ¥)  0gi(¢, X5, Ayj) 0N

*

5{1’5;[,&] OAS; @ﬁf’i{:d]
0g:;(t, Xij0 Aij) 5 i
=7 e, (a®) +960(8) * Yg) * Lijentua(t)

0g:(t,X;, ®,¥) Jgi(t,X;,A;) O
= *

0o, [sd] O] OPfsd)

agi(tﬂ}:iﬁ AI) c [ c
= * (a(®) +70)(1) * ¥fia) * Liesa(t)

ag[sd}(tﬁ X—n[ad]a (I".r ‘I’] agT.:d] (tﬂ Xn[sd] ’ Aﬂ-[ad]) 8}";[3&]
- *
aqﬁg[ad] a}‘gf_sd] aqﬁgisd]

ag[sd}(ts Xa[ad}a Aﬂ[!d}) & " 1
o af}‘ﬁ[ﬁ] * (T[sdj(f) - "f[,_](t) * ’*.L’[m:])
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0gi;(t.X,;. @, ®)  8g;;(t. X5 Ayj)  OX

OVfya B ON}; # Wi
8gf'{th{'1Ai-) - O
= ¥ e * Mo (t) * B7a * Lijenina(t)
”["d]eufsdi 1

9g:(t, X, 8, ) _ 6g:(t.Xi A) DX

* =
81&-'?3&] @}\f ﬁﬂ-‘ﬁ,d]
agi(nghAi) e c¥
= ¥ e Vel () * Onlaq) * Lienioa) ()
r[ad]EHi"‘d] ?

8g[sdf(t} Xvu[sd]a @1 ‘I'] 39‘[3&] (ta X‘ﬂ[!d]! An[sd]] " 6)‘;[.-1&]

—

awf&d] @AZ[Jd]’ au&f&d}

- 8‘9[;&] (ta Xa{sd}a -A--::ni:sd] )

* ‘Tf:a](t) ¥ Qﬁ;r,d]

O aa)
0914t X1a), B, ¥)  9g14)(t, Xpa)y Arg)) 0Alg
OV 2P O%foa)
agfd(tﬁx.dﬁﬁ d) e
= ] < * Vi (t)

212



Then Pontryagin’s maximum principle becomes ¥ ¢ & [to,¢,]:

Xa(t) = f5,4(6X5(0),8%(t), T*(t)) Y ij, [sd] € SD*, &
Xkalt) = f5,06,X:(t),8°(t), ¥*(¢)) VY C, [sd] € SD*, &

Xk o (2) £ (6 X g (t), 2%(2), ¥*(t)) ¥ [sd] € SDF, &

Xbpa(t) = £,0(6X0 (), 8*(t), ®*(¢)) ¥ [sd] € SD*, k

Xfﬁ,d]ftﬂ) = Xf}[mj v ij, [sd] € SD*, k
Xgalte) = Xhao Vi, [sd] € SD*, k
Xehalte) = X0 V [sd] € SD*, &
X{apalte) = Xfgpae Y [sd] € SD*, k
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Ogtaa)(t- X2, a(t). el (t)) | |
{f};f ; * (Vaa)(t) + 75 (8) * P (2))+

+ 2 Po * Ve B8 Xia (1), 8°(t), T*(2)) -
_Qfad](t) 5 ﬁazrsd](i} =0 A [Sd] < SDC’ ¢
0g:i(t, X;(t), Af;(2))

Z )¢, * (Trgﬂ(” +T|.-‘ ( } Irfil[_y:,{,]( )) * ]-ijErr[sar](f)+

e

0g:(t, X (t), Ai () , . " ”
+ Z E3Y: * (Voq)(8) + [ () * Yogy(t)) * Lienpeq)(t)+

&7 Z Z Zpu[a rl] ¥ vfﬁ‘ fz'u 'd ](taxzj(t}ﬂﬁ.(t)?@*&))_'_

w[ad]
k (44 ] #

+20 3 2P () Ve, B (8,X5(2), 87(2), ¥°(2))

k [.sc..-‘] )

—QLag(t)| * &51,q(t) =0 V n[sd] € IIf,;, [sd] € SD°, ¢
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Bgi;(t, X25(£), AL(t))
E E J 6J)t'§’. . * qrirs(t:] o mrzad]{i}) * li_J'E?r[sd'}{f]_!'
1.? TIJd]EH[ d i)
Ogi(t, X*(t), Ar(t)) 2
+ T‘ T = ( 5)\‘: ( * 'J’l, ]{t) * ﬂ'.:d']( )) * ltErlsd?[t}_I_
tor[sd]eIIF i'

+39[5d](f~xz[,d;{fﬁ ofsd)(t))

[

AStsd

+ |
ﬁk[cﬂ

+T T 5_: IJlJﬂ-’J *?”;d f:;”d (f-X?j[fL@*(f):‘I’*(f]H

k [s'd']

F30 30 YU (8 % Ve £E (8, X3 (2), 8°(2), °(2)+

k [sd] 1

+Zpk[sd * Tiﬂ:’d fj.‘!‘d]{t Xa[ad]( )7@‘{tj?‘1‘*(t))+

k.c * " .
+ ZZPld][s ) % Ve, apa (6 Xig(t), 8°(2), B°(t)) -

—Qf ()] * ¥fy(t) =0 v [d €Df), [s] €85 c

-
_..1]

on



0g1aa)(t, X3 g () Adpg ()
HNC.

::aad

« (1) + (1) = Uiz (£0)+
olsd]

TZP:[E * Vo fk[ad]{ti}{;i:ad](t}a@*{t}a‘I"(t})‘“

—Qhq(t) 20 v [sd] € SD¢, ¢

0gi(t, Xi(t), Ai(t))

" Z OAS i (Tfﬂdl(ﬂ T 7&-](“ * ¢f:d](f” * lz’E:rr[sd](t)—i"

R 2P () * Vg T (6, X35(2), 8°(8), () +

i} 1]
;CC c * * =
o T ZE]ZP ‘i’ii,d;fiia'd’}(taxi(t)ﬂ ®7(t), ¥7(¢))-
~Qf,y(t) 20 v mlsd] € IIf, ), [sd] € SDF, ¢
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Bg;(t. X3;(t). Az(t))

Z Z a)\e * "n'[s {f) Gfr.sd}{t” ltjﬂfrlsd {t}_i_
1] “[’J]EHTEH:: 1]
O0gi(t. XI(t), Al (t)) . .. ..
i D e * V51(8) * 931,4)(2)) * Lienfsa)(t)+

i wlsd]eIIF,

B4t X1, (8) Al (1))
g

ofad)]

* Y (8) * @5, (L)) +

- « 7, 1(t)+
X 4 2]

+Z Z ZPU[, () * Ve B (6, X5(8), 82(2), B*(2))+

+2 T YP“:;] * Ve Lha (6 X5 (2), °(2), B (8))+
+ZP:}[5d] * vtﬂ'-l fksd](t Xﬂlsa’]( )?@*(t]T‘I’*(iJ)-'-
+ZZPW ) * Ve (6 X g(2), ®°(8), T (8))—

-Qf,)(t) 2 0 v [.d] € Df,}, [s!]

(M

= S
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5 c.k .
P;‘J[,d][t} = —Txfmd]gﬁ(t.xa. d*(t), T*(t))—

—Z ZP (8 * Ve A0 (8, X5, 8%(2), B (¢))

plad] W]

V ij, [sd] € SD*, &

Pc[fd](t) _TX‘F Q:(fwx::i'*(f)a‘l"”})“

t[.ld]

=2 2PN ()« Ve 106 X7, 8%(2), (1))

thd
" sd]

Vi, [sd] € SD*, k

Pioalt) = —Vxi gt Xi,g 8*(t), ®°(2))-

of sd]

_ZPaLad T*?X“ fnm’](t X‘ sd}?@‘( ] \Il’"(t))

_"ZZ f.gll[sd( :’*V}E[*d” d]f[“d][’,d](t!}{'[‘_dj,@‘[t]allr*(t)}

V [sd] € SD*, k
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Ofa(t) + D OT.at)=1 V¥ [sd] € SD, ¢

U

"lsdelTy,

;c ]wlsd] v [s.] € 8% ¢
qﬁgr_!d](t}, Pilay(t) 2 0 vV wlsd] € ad] sd] € SD°, ¢
Ufry(t) 20 vV [.d] € Df,;, [s.] € 8¢, ¢

Next, for each class ¢, we define the length for the rejected flow [sd], the length
for the path n[sd| and the length for the source-destination pair [sd]:

c,team ‘agsdi(tﬁxaad (t]ﬁﬁua (t)} c . =
Loy () = -2 {;Ai[ ; ol (Vioa) () + 7115 (2) * ¥g(E))+

"'ZP: * Ve fagsa](faxa[sd}(f]s‘I’(f)ﬁl'(t))
ke

o sd]

v [sd] € SD°, ¢
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0g:i(t, Xii(t), Ay;(8))

ETC;"EEJZEEm(t} = z . a/\c = " [’?E:sd"{f) a5 Fr?:sl(t} * EI!f;d]{f” * ]-z'_.r'E.-riad][‘t}_!'_
1] ]
Bai(t, Xi(t), Ai(t)) C )
T Z a)\" ¥ (T[ad](t) i ‘T[J](t) * ﬂ}[sd](t)) " liEﬂ[ad]{t)_;_
3020 D P (8) % Ve B (6, X5 (2), ®(2), T (2))+
k [s'd'] u

+ 3% TPE.-. ()% Ve £5000(8,Xi(t), @(8), B(t))
k [,d] 1

V misd] € ITf, 4, [sd] € SDF, ¢



U YD o
i]

[Ce—

1] T ad|E H;::d]

,:jff} Tsd]{t}}*lfJEfsd{fll

8 1 taxi L '.*A-t' t c ¢
+y ¥ PSR e 0% 65pg(6) * Lieatua(6)

t mwlad]e Hf"d]

+8g[sd](t‘lx [Jd](t}?-&ﬂ[ad](t}) c

OAg(ad]
Ogr.a)(t, Xy q(t), Arglt)) -
- : * ’TC,_ (t]-|—
(?)‘[d1 [s.]
T2 D0 D P (8 ¢ Ve £ (8, X5(8), B(8), B(2)+

k [4'd'] W

+ZZZP§’: ) * Ve, £50 (6, Xa(t), 8(1), B(2))+

Zpa[ad] vﬂi’f’ ]fa[sd](tixﬂisd](t)?@{tJ! \I’(t”_}_
+ZZP;‘C d] #?t,ir fk] d](t?x[.d](t}ai’(t)'.rq’(t))_

.d] € Df,;, [s.] € 8% ¢

External arriving flow at a source is assigned to the destination that has the
minimum length from the source. However, this flow may be rejected if the length
of rejecting it is less than the lengths of the paths to its destination. If it is
accepted, then it is routed to its destination via the minimum length path.

In the next section, we will derive the same conditions by an alternative way,

and we shall state the above ideas more formally.
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5.1.6 V.I. for Separable Cost Functions

Equivalently, the team optimal solution definition, each class ¢ minimizes its cost
function g given the optimum decisions of all other classes. We first solve the rout-
ing and congestion control problem assuming that all other classes act optimally

for themselves. So, class ¢ first solves the routing and congestion control problems

Minimize ftf glt, X, ®(t), ¥(t))dt =
= Z/:f g (8, Xii(t), Ay;(t))dt +
“t
ca Z/ gi(tvxi(t)uﬁi(f)]dﬂ +

1

by
iz Z/; gg"d](t!Xﬂ[sd](t}pﬁa[sd](t))dt -
[d] *7°

ty
+ Z/; gild](t,x[ﬁ](f), A—[,d](t))dt
[ogl ™ ™

with respect to  P(t)
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such that

Xrna(t) = Aot X)), 8(8),®() V¥ ij, [sd] € SD*, &
Xha(t) = fhy(t,Xu(t), 8(¢),2(t)) Vi, [sd] € SD¥, &
Xsalt) = £5,4(t,Xq(t), (), ®(t)) V [sd] € SD, k

N
B,
r—
R
—
L
R
!

f[%d][:ﬂ’](tix[.d]l’t}!@(tjﬂT(t)) v [sd] € SD*, k

Xialte) = X V ij, [sd] € SD*, &
Xtglte) = X, v 1, [sd] € SD*, k&
Xkalto) = X0 v [sd] € SD*, k

Xeapag(te) = Xfapae v [sd] € SD*, k

Goreq(t) + Y Grsa)(t) =1 ¥ [sd] € SD°

wlsd]E Hf,di

Goraat(t)y Bopeq(t) 20 V wlsd] € IIf,, [sd] € SD°
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The necessary optimality conditions are ¥V t € [to,ts):

s [ Bg(t.X"(t). @°(t). ¥*(1))

odie8Ds | 0P * (950a — P5hg(E)) +

¢ 5 AR S EE)
sfsdietrs,, 9%lad) * (Frea) — Dolaa)(t)

} >0 VY & cRC"

such that
Xk a(t) = £t X5(0), @°(2), ®%(¢) V45, [sd] € SD¥, &

_—
w ®
B
——
L S
e
I

£ 4(6,X1(t), 2*(¢), ®*(¢)) Vi, [sd] € SD*, k&

Xkea(t) = 55X 0La(t), ®7(2), ®*(t) V [sd] € SD, &
Xfoa(t) = fna(tXig(t), 8%(t), ®*(t)) V [sd] € SD*, &
Xihalte) = Xiuane V¥ ij, [sd] € SD*, k
X%alte) = Xia0 ¥ i, [sd] € SD*, k
Xkralte) = XEa, V [sd] € SD*, &
Xtaa(te) = XEanae v [sd] € SD*, k
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- R

PzJ‘[:d]{t} = —T:(f}[,ﬂg;j{th:ﬁ@‘{f].q_"{t”—

= D Vxr PR (8) % £ (8. X5, B (2), B (¢)

17(sd] U[":f] -”- d'
" [s'd]

¥ 17, [sd] € SD*, k

Pig(t) = —Vxe ai(t.X]@%(t), T(t))-
“Zn: E}Txﬁmlpc:dl( ) * f;ﬁ;d,](t,}{;,f]?"‘(t),‘-l"(t))
Y i, [sd] € SD*, k
Pitg(t) = —Vxr gua(t, Xy, 2°(), 2°(t))-
—Z?x* oiea) (8) * £0,0 (8, X5, ®°(8), ®*(2))
¥ [sd] € SD*, k
Plipa(t) = —Vxr,  ga(t, X7y, (), ¥(t))-

2. vaﬂ;{-dip[d[sd]( )+ 8 (8 X, B7(2), 7 (2))

”’[:.

VY [sd] € SD*, k
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2. %

(t) =1 V [sd] € SD°

v wlsd] € TIf,y, [sd] € SDF

286



We can decompose these conditions for each source-destination pair [sd]| £ SD°
Vi - [t{], tf]

Og(t X*(1), 8(4). ¥ (1)) o e
B¢ * (Bopea) — Poag)(8))+
-a[.sd,'] !

Og(t, X*(t), ®*(t), ¥T*(t))

2

* (@1 — Oila)(t)) =0 ¥V &° € RCS

rlade I, , 0%ried "
such that
Xkea(t) = frg(6,X5(t),8(2), ¥*(t)) Y ij, [sd] € SD¥, &
Xkg(t) = fa(6,X:(t), (), ¥*(t)) Vi, [sd] € SD*, k
Xiagt) = £5,0(6X0(0), 8(2), ¥*(t)) V¥ [sd] € SD¥, &
XFnag(t) = gt Xiy(t), (), ¥ (t)) V [sd] € SD*, &
X?ﬁsdj(tﬂ) = X?j{;d},u v ij, [sd] € SD*, k
Xialte) = X Vi, [sd] € SD*, k
Xitalte) = X0 V [sd] € SD*, &k
Xfapalte) = Xfando vV [sd] € SD*, k
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s 1L
P 1l ad] { t }

Piia(t)

‘i’;‘[:d] (t ) +

¢Z[,d] ( t ) 9

— _?x.h;hd]gii(t*.x:jt‘i’t(t]ri[ﬂ:{f”—

_Z \T‘Tx
" [s'd']

1] ad]

|

1ot (8) * Bt

1718

vV [sd] € SDF, ij, k

I

[ sd]

=35 2.5 VKL,
n[s'd]

1] s

v i, [sd] € SD*, k

~Vxe gt X], @°(¢), T*(¢))-

1.[5 d

2 o

1)

= —?xﬁ[.qglaﬂ(taxz[ad}a‘I"(f]a‘l'*(ﬂ)—

v [sd] € SD*, &

2*(¢), ®*(t))

e (8) * £, (£, X0, 82 (8), B (2))

* -:-tm:if(t X. @-( ) ‘I’*(t):]

s ——Txh g[ d}(t X[d};@-(t) ‘I”( )]

=3 Z"‘T”xrﬂ o F Ldlsa)(t) *

”’[5.

V [sd] € SD*, k

2. il =

Tr[-'!d]E HE:”‘]

[Sd] = th]

£ e a (B X B7(2), ¥7(2))
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Theorem : Routing

$ha(t) >0 only if LG (8) = min{{EE™ (). min{IiA™ (0}

Oisa)t) =0 0.W.

! ;Ld}(t) e Z {p.:[sd](t} =1
r[sd}&ﬂfld]

¥ w[sd]| € IIf, s, sd] € SD°, ¢

and satisfies the partial differential vectors for the state and the costate vam-

ables.

Theorem : Congestion Control

Flow 1s not admatted into the network only if its rejection length 1s less than

the minimum length path to its destination:

0,a(t) >0 only if 157" (¢) = min{l5™ (), min{ L™ () }}
l p|sd]
@:.Ead] = U 0. .

cr[,s::i]{ ) + Z frTsd](tJ =1V [Sd] € SDC! ¢
[ sd] EH‘ d]

and satisfies the partial differential vectors for the state and the costate vari-

ables.
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Having found the optimum routing and congestion control decisions, we proceed
to solve the load sharing problem for class ¢ assuming also that all other classes

act at their optimum decisions. So, the load sharing problem for class c is

minimize f” g(t, X (¢), ®*(¢), T (¢))dt =
to

+ 3 [T et Xu(e), At +

tf
y th g[sd](t:Xa[ad](t)jﬁg[ad](f])dt -+

[sd] ©

tf
T %];u gr.a)(ts Xpa(t), Apg(t))dt
d

with respect to ¥(t)
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such that

Xhoa(t) = ffL,q(6,X(0), 8(¢),®(8)  Vij, [sd] € SD*, &
Xeagt) = f5 a6, Xu(t), 8(t), B(t)) ¥ 1, [sd] € SD*, &k
Xha(t) = fha(t, Xopa(t), ®(2), ®(¢)) ¥ [sd] € SD, k
XEpa(t) = o a(6Xia(t), ®(2), ¥(t)) ¥ [sd] € SD, &
X?j[ad}(tﬂ} = X?j[sd]ﬂ v ij, [sd] € SD¥, &
Xiglte) = Xia Vi, [sd] € SD*, k
Xhalte) = X4 ¥ [sd] € SD*, k

Y [sd] € SD*, &

P4
A
By
o
B
—
e
=
s —
I
>
Rt
By
"
B
o



The necessary and sufficient optimality conditions are ¥V ¢ € [tosts):

"(ﬂfgﬂ'—*fﬁbﬂt)) >0 VW¥eLS

¢ ﬁﬂrfad]
such
Xﬂct (t) = + X. . . .- e
17]ad] ad]( { ) ® (t:]'-"I' (t}) \i?'t.}', [Sd] € SD ) k
7 Lo s * * .
Xig(t) = g, Xi(2), 8%(t), (1)) i, [sd] € SD*, &
Xona(t) = £l (6, X (), @*(2), ¥*(t)) V [sd] € SD*, &k
Xioa(t) = fna(t.Xig(t), ®(t), ®*(t)) ¥ [sd] € SD*, &
kew
Xalte) = X&.a0 Y 17, [sd] € SD*, &
X:tad]( ) — X:F[ad],ﬂ HIT [Sd} S SDkﬁ k
ng;d](tﬂ) == Xﬂf.-!d] H [Sd] E SDk, k
Xiea(te) = Xfaian v [sd] € SD*, &
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Piagt) = —Vxu 05t X5, 8%(t), €*(1))-

i cn n .
'Z ,T xe Prrn(8) < £ (8, X5,

" [s'd')

YV ij, [sd] € SD*, &

®7(t), ®(¢t))

Pty = -Vxr  gi(6, X7, @°(¢), ¥°(t))—
—Z Z Vs P (t) * £2,00(6, X5, @%(¢), B*(t))
Y 1, [sd] € SD*, k
Piaa(t) = —Vxr gt X5y, 8°(t), L*(2)
_va,, P (t) = £,q(¢, X5, 8%(2), ()
¥ [sd] € SD*, &k
Plina(t) = —Vxr, It X g, B7(), ®*(¢))-

_-Z vakd][.d] d][.sd]( ) f[’fd]{,’d](t:'xid]util*(f)ﬁ

Nl

Y [sd] € SD*, k&

> Yit)=1 V[s]ese

ﬂ[,d][ ) 7 [Cf} - Dfa.]’ [S.] - 5¢

v (t))



We can ' | ' '
decompose these conditions for each source node [s.] € S V't € tg.t41:

5 Og(t, X*(t). ®°(¢). ¥*(t))

« (U - ¥g(t) 20 V&€ LS

Ld]eDf, | EM [s4]

such that
XEa(t) = 5 (4, X5(0), 8%(t), ¥ (t))  Vij, [sd] € SD*, k
Xkalt) = £5a(6X5(t), (1), ®*(t)) Vi, [sd] € SD*, &
XEa(t) = £ (8, Xy, q(8), ®°(8), ®*(t)) V [sd] € SD*, k
XFbpalt) = gt Xig(t), @%(t), ®*(t)) V [sd] € SD*, &
XSalte) = X&nao VY 17, [sd] € SD*, k&
XEat) = X0 Vi, [sd] € SD*, k
Xkalte) = X&.a, Y [sd] € SD, k
X[d,m( 0) = Xﬁd][ad].l} v [sd] € SD*, k
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Pf_jf&d]{t) == _Txh;‘d]gi}(tﬁxiﬂ‘I)-{fjlf ‘I'l{fj}_

'Z Z TX;I d] :;T:’::"f(f) % f;j;' (t X:.?’ (1), ¥(t))

Y ij, [sd] € SD*, k
Pila(t) = —Vyxe gilt. X!, &*(t), B*(t))—

[d]

3 3T U PO () # £7 (8, X1, B0(E), T (E)

:[:d] 14 a:f]
nofs'd']

Vi, [sd] € SD*, k

Pilalt) = —Vxe giq(t, X, 8°(t), ¥*(t))-
—TV}H o Potoa)(t) * £ofsq (8, X5, ®7(8), ¥7(2))
¥ [sd] € SD*,
Piea(t) = —Vxr, gt X[y, (1), ®°(¢))~

*Z va[ﬂr o F Lo (t) * £ (8 X g, B7(2), B (2)

v [sd] € SD*, k

>, Yy(t)=1 V[s] €S
_.d]eDf__]

Uee(t) > 0 ¥ [.d] € D,



Theorem : Load Sharing

For each source, there must be flow only to destinations whose length 1s mini-

maurr,

Ui (t) >0 only if frazam*(t} 1}51;1]1{3':5:??“*&)}

-1;1["";d](t) =0 0.W.

Z lf’f:d]( —IV[GHED , [s.] € 8% ¢
dJ€SE,

and satisfies the partial differential vectors for the state and the costate vam-

ables.

Thus, in this section we have formulated and solved the load sharing, routing

and congestion control problem as a team problem among multiple cooperative

classes.
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5.2 Nash Equilibrium Solution

In this section, we formulate the dynamic join load sharing, routing and congestion
control problem on the path flow space as a non-cooperative dynamic Nash game
among competing classes.

Customers of each class try to use the resources of the distributed system for
their own benefit, ignoring the inconvenience that they cause to customers from
other classes. Since the behavior of each class is similar to that of any other class,
i.e. to operate optimally for its customers. next we consider customers only from
class ¢, and the effect of customers from other classes on them.

After the static non-cooperative games by Nash [347|, dynamic non-cooperative
cames have been investigated and are presented in books by: Isaacs [231] Blaquiete.
Gerard & Leitmann [55] Friedman [173] Case [87], Rosenmuller [404], Mehlmann
328], Krasovskii & Subbotin [265] among others.

Next, we briefly review research on dynamic Nash games:

Berkovitz [34] obtains necessary conditions for zero-sum differential games.
Sarma, Ragade & Prasad [425] introduce dynamic n-person noncooperative dy-
namic games and provide necessary conditions. Case [88] provides sufficient condi-
tions and use dynamic programming arguments. Stalford & Leitmann [459] discuss
sufficiency conditions for dynamic Nash games.

Sandell [417] proves that for deterministic nonzero-sum games any open-loop
Nash strategy is also a closed-loop strategy. Williams [513] obtains sufficient con-
ditions for the existence of Nash equilibrium and proves that a class of linear-
quadratic differential games have equilibrium point when the duration of the game
1s sufficiently small.

Papavassilopoulos [374| proves existence and uniqueness of the solution for
discrete-time linear-quadratic Gaussian Nash games with one-step delay obser-
vation sharing pattern. The solution is also linear in the information. Tu & Pa-
pavassilopoulos [501] consider discrete-time linear-quadratic Gaussian Nash games.
They show that better information is beneficial to all players if the number of stages

of the game, or the number of players, is larger than some bounds. For two-person

2
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zero-sum games, better information 1s beneficial to the player who has better ma-
neuverability. Basar & Li (26| derive conditions for existence and uniqueness for
stochastic linear-quadratic differential games. They also provide an algorithm for
an 1terative distributed computation of the solution.

When the classes are in equilibrium, no class can decrease its cost by altering
its decision unilaterally. Next, we give the definition for a Nash equilibrium [27],
for the join load sharing, routing and congestion control problem on the path flows.

Definition:

A vector (®*,¥*) € (RC,LS) 15 called a Nash equilibrium for a ('-class join

load sharing, routing and congestion control problem if and only if

T ) < inf Y TTT T
‘I;].tj --,.‘I’“, ‘I’C' S ‘I,I‘_“‘I@c*’"”,;,tﬂt
¥! g LS!
Bl L B L DO Hl* .. P, ... C"
JC( 1:-. ce C# } & inf Jc( 1 o | C }
e = LS°

-
)
|

i-I]_f JCI'( LN B }
':'1: 'E RCC wa EERY

¥C ¢ LsC

5.2.1 Optimal Control Formulation

In this section, we formulate the dynamic non-cooperative join load sharing, rout-

ing and congestion control problem as an Optimal Control Problem (OCP).

Theorem :
Consider the dynamic join load sharing, routing and congestion control problem
in distributed systems with multiple competing classes, with fized initial time ty and

final time ty.
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If for each classc, H¢(t, X, ®., W.P(t)) 1s differentiable and conver in (X, ®°. ¥°) =
(R,RC,LS°) V t & ltg,ts]|, for each fired value of

(1, @Y, .. -1, Pl el gerl O PO)

e (RCY,LSY,...,RC*}, LS*"!, RC+!, L§**!, ..., RCF, LS%),

then (®@*(t), ®*(¢)) € (RC.LS) is a Nash equilibrium if and only if it solves
the following Optimal Control Problem W t € [t tf]:

Y e

ty

minimize go(t, X(t), B (t), (L), ..., BE(2), ®E(2),..., B (8), ¥ (2))dt

L ! tl}

with respect to (®°(t), ¥(t))
such that X(t) = f(t,X(t), ®(t), ®(¢))
X(tﬂ) — X{}

(Pe(t), Pe(t)) € (RC,LS°)
Proof: It follows from the definition of the Nash equilibrium. O

Theorem :

Consider the dynamaic join load sharing, routing and congestion control problem
in distributed systems with multiple competing classes, with fized initial time to and
final time t;.

Let for each class ¢, g°(t, X, @, ¥), f(t, X, ®, ¥), are continuously differentiable
with respect to X € R™, V t € [to, ty].

If (8*(t,Xo), ¥*(t,Xo)) = (®*(t),®*(t)) € (RC,LS) is an open-loop Nash

equilibrium and {X*(t), t € [to,t¢]} ts the corresponding state trajectory, then

3 P(t) : [to,tf] — R™, V ¢ continuous and piecewise continuously differentiable

vector functions, such that V' t € [ty,t4]:
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X*(to) = Xo

@H""‘

e~ Qha(t)| * ¢5q(t) =0 V [sd] € SD*, ¢
i qbﬂ[:d] ] L

{?Hft | i

3 — @g(t)| * 077,4(t) =0 VY m[sd] € IIf,,, [sd] € SD",¢c

1“‘I:I'*ﬂr[au:,"] % :

5Hcv ] |

e~ Ql(t)] = ¥iy(t) =0 v [d] e Dj,, [s.] €5 ¢
Raa® :
JH¢*
{‘j] c - Qfsd](t) 2 0 v [Sd] - SDL—; C

Pofsd)

g

—— — Qf,y(t) >0 d | c
5% Qo) (1) r(sd] € TIf,, [sd] € SD*, ¢
g H<* _ _
@wﬁd] - Qza.](ﬂ >0 vl [.d] = D[a_], ,{5.] eS¢, ¢

Pe(t) = —Vx H(¢t, X", &*(¢), T*(¢),P(t)) Y

Pc(tf) =0 V ¢
ﬂ[-ﬂ'—’i(t Z fr'f.q.i}(t) =1 Y [sd] € SD°, ¢
w|sd]€IIf
Z 1’0[51:’.]( ) v [3] c Sc’ e
LdJeDf, |
E‘[Isd}(t}‘ :i-’d]{t) :2 0 [3d] - H[sd? [Sd] = SDE? £

Pisg(t) 20 v [.d] € Df,), [s.] € 8¢, ¢
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Proof: The Lagrangian for each class ¢ is

L= H+ Z Q?;d]* L= {é;i,:.id] o E 1"f'ﬂ'l:r[m:."] 3 Z Qfa]* L= Z Eflf-!'i]

sd]eSD* rlsd]e IIf, s ]€S¢ .d)eDs, .

Wlth ﬁﬁ'g[_’d], Gﬁfr[ad]‘ Lfsd :_'\’:': 0 v W[Sd] - Hfﬂd]'-‘ [Sdi - Sch, C

Pontryagin’s maximum principle necessary conditions are:

X*(t) = £(t,X"(t), 8*(¢t), T*(t))

X*(fﬂ) = X
oL oH** _
2 alt) =0 = — Qfg(8)] xS 4(¢) =0 V [sd] € SD°, ¢
ac‘,ﬁz[’d] * g[ad]( ] [ﬁﬁbi[,d; Q[ d]( ]J l d]( ] | ] =
gL . OH*®
e ¥ Pea)(t) =0 = [ — Qg (t)] * P (,q(t) =0

T Prlsa)(?) Er Q) (£)] * &77,q(2)
¥ m(sd] € IIf. ;s [sd] € SD%, ¢
aLc- - _rL;ch* . ox " 5
a‘tlﬂlfyﬂ * wad](t] ] at-"};d} - Q]‘_!](t)] % T,L’[Jd](tj =l ¥ [d] = D[s]‘ [S] = S y C
oL GH®

>0 = —— —QF0(t) >0 VY [sd] € SD°, ¢
a¢)§[:d] S{pg[ad} Q{ dI( ] [ ]
1% dH™ : ,_,
ac‘f)i_[,d] 2 0 = §¢};[Jd] = Q[sd](t} :2 0 V¥ ?T[Sd] = H'{sd]! [Sd] e SD e
oL I aH*

R ¢ - Qfs](t) E 0 v [d] € DE[:;;_]T ["5‘] € Sc? c
Y Yo
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Pe(t) = —Vx He(t, X", ®*(¢), T*(¢). P<(¢t)) ¥ ¢

Pe(ts) =0 ¥ c
6&L_c'-
50~ 20 = ()t > ofy(t)=1 Vsd €SDS c
[ad] Tr[ad]EHL,F_d}
aLct .
o =0 = X Yfut)=1 ¥[s]es e
[s.] djeDF, |
Dofsa)(t)y Prea)(t) 2= 0 ¥ wlsd] € IT, 4 sd] € SD°, ¢
:;i"’f:d](t) >0 V [.d] € Df,), [s.] € 8¢, ¢

Theorem :

Consider the dynamaic join load sharing, routing and congestion control problem
in distributed systems with multiple competing classes, with fived initial time ty and
final time 5.

Let for each class ¢, g°(t, X, @, W), f(¢, X, ®, W), are continuously differentiable
with respect to (X,®,¥) € (R*, RC,LS), YV t € [to, ts].

If (2*(¢,X,X,), ¥*(¢, X, X)) = (8*(¢), *(¢)) € (RC,LS) is a closed-loop
memoryless Nash equilibrium such that (®*(t,X,X,), ®*(¢,X,X,)) s continu-
ously differentiable with respect to X € R™, Ve, t € [to,t5] and {X*(t), t € [to,t4]}

15 the corresponding state trajectory, then 3 P¢(t) : [to,tf] — R™, V ¢, continuous

and piecewise continuously differentiable vector functions, such that ¥V t € [to,ty]:
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X‘(t[}) = Xﬂ
- 5‘Hﬂh ]
S Q6] = #aft) =0 ¥ [sd € D", ¢
; Gﬁﬂ[dd] D
h 5Hﬂt

 — Qha(t)] % 05g(t) =0 ¥ xlsd] € ITj,g, [sd] € SDF,c

oH | , 1
e QL ()| *¥fiy(t) =0 V[d] € Df,,, [s.] €S, ¢
| O¥ ad) _
ch-
S Qﬂd](f) >0 v [sd] € SD°, ¢
{?"L'.u[.!d] L
dH<* + _
i Qf,q(t) 20 V n[sd] € IIf,,, [sd] € SDF, ¢
m[ad]
ﬂHE:
— 5 () =2 v (.dl € Df,, |s.| €8¢
Bb, ) 20 ] € Dy, [s] € 5%, c

Pe(t) = —Vx He(t,X*, ®*(¢,X", Xo), (£, X*, X,), P<(¢)) V¢

Pc{tf) =i{) Y o
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Dola)(t)+ D @,a(t) =1 ¥ [sd) = SDS, ¢

~of miad]
‘-‘r[ad]EHid]
b Yhalt) =1 v [s.] € 8%, ¢
[.d}EDfL]
5T,a(t), Dafa(t) >0 V wlsd] € IIf,,, [sd] € SD*, ¢
Tﬁl’[c:d](t) 20 v [.d] € Df;-}: [5] E85 ¢

Proof: The proof is similar to that for the open-loop solution.OC

The above set of equations does not in general admit a single solution. In order
to eliminate informational nonuniqueness in the derivation of Nash equilibrium
under dynamic information, we constrain the Nash solution concept further (see

next section).

5.2.2 Dynamic Programming Formulation

In this section, we formulate the dynamic non-cooperative joint load sharing, rout-
ing and congestion control problem as a Dynamic Programming Problem (DPP).
Algorithms for solving DPP’s may be found in books by Bellman [31], Howard
220], Kumar & Varaiya [274] Bertsekas [37], Ross [406] among others.
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Theorem :

C'onsider the dynamic join load sharing, routing and congestion control problem

in distributed systems with multiple competing classes, with fived initial time to, and

final time t;.

(@*,¥*) € (RC,LS) is optimal if and only 1f the following conditions are

satisfied:
t s ) ) |
i}f g°(t, X*(s), 2% (X"(s)), T*(X*(s)

Eo
i) 3 X*, P, ¥ ¢ such that :

e xv(e), K0 BE(XC (D))
T E(X(2)), e, TE(X(2)),
B1(X()), ...

_Hc 1}{ 3
h Al T (X(t)),...

)ds = constant Y ¢

s B X (1)) Pe(1))
R d (B S A
s BON(X(2)),

o IO (X (1)), P +

+ Pe(t) x (X*(t) = X) <0 ae. tE€][tots], VX €R" ($,¥°) e (RC,LS), ¢

Pe(ts) » (X*(t;)—X)<0 ¥ XeR"

Proof: By integration of ii) and using the state equation, we get the Nash equilibrium
conditions.

Definition :

Consider the dynamac join load sharing, routing and congestion control problem
in distributed systems with multiple competing classes, with fized initial time to and
final time ;.

Under the memoryless perfect state or closed-loop perfect state information
structure, (®,¥) (RC,LS) constitutes a feedback Nash equilibrium solution if

and only 1f 3V : [to,t¢] * R® — R satisfying the following relations for each class
c:
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I

17¢(t, X)
B1*(5,1(8))uerey B (5. 1(5))erees BC* (5. I(s))

Lty
— 2 - . - ds <
/f gis Xs) T (6, 1(8))s oy T (5, 1(5))y e (5, I(5)) s £

31%(5,1(5))y .0y (5, 1(5)), o0y BC* (5, I(5))

£
*te, X ls) , , d
- ft ot Lol B (5, 1(5))seoos B, 1())s s BC*(5,1(5))
v (29(s,1(s)), ¥°(s,1(s5))) € (RC",LS°), X € R™
such that V¥V s € [t,t4]
pl+ pe(s,I(s)),.... 2C*(s.I(s
XE(S) = f(S,XC(S}. ‘? {_S,I(S}),...,‘?[ JI( )); ?G (s,1(s)) j
P (5,1(s)), e, TO(5,I(s))yonn, BO* (5, I(s))
Xe(t) = X
1= s 3 cH Cx
X+ (s)  E(s.X"(s) $'*(s,I(s)), ..., 2*(5,I(5)),.... ® (515})
W1*(5,1(5)), e T (s, I(5))yune, O (s, 1(3))
X*(s) = X

where I(s) = {X(s),Xo} or I(s) = {X(7), T < s}.

The concept of feedback Nash equilibrium solution means that if (®(s), ¥(s))
1s a feedback Nash equilibrium solution to the problem during [to,ts], is also a
teedback Nash equilibrium solution to the problem during [t,f], with the initial
state taken as X(¢). So, feedback Nash equilibrium strategies will depend only on

the time variable and the current value of the state, but not on memory.

Proposition :
Every open-loop Nash equilibrium solution for the dynamic joint load sharing,
routing and congestion control problem among cooperative classes is also closed-

loop Nash equilibrium solution.

Proposition :
Under the memoryless (respectively, closed-loop) perfect state information struc-

ture, every feedback Nash equilibrium solution of the dynamic join load sharing,
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routing and congestion control problem among competing classes s a closed-loop

no memory (respectively, closed-loop) Nash equilibrium solution.

Theorem : ‘

Consider the dynamaic join load sharing, routing and congestion control problem
in distributed systems with multiple competing classes, with fized initial time ty, and
final time t;.

[nder the memory perfect state or closed loop perfect state information struc-
ture, {‘i','i') c (RC,LS) provides a feedback Nash equiltbrium solution f I V° :
to,ts) x R™ — R, ¥ ¢ satisfying the partial differential equations

_ave(t,X)
Jt B

$1*(¢, X),..., ®°,..., 2°*(t, X)
D (4, X)), ., T L, BOH (8, X))

. ave(t, X)
= min

« f(t, X
($< Pe)c(RC,LS°) X &

|+

%1'(& X}v voy B4 aees ‘i’c‘{h X}
+ g(t, X

D, X)), T L B0 (1, X))

$1*(t,X), ..., 8*(t, X), ..., 2°* (¢, X)
CB X)), T (X, L, WO (LX)

)+

$1*(t, X), ..., (¢, X), ..., ®€*(¢, X)

+ glt, X, . ) 3
( AR XL o (2 R )y s T X )

)

5.2.3 Nonlinear Complementarity Problem Formulation

In this section, we formulate the dynamic non-cooperative load sharing, routing
and congestion control problem as a Nonlinear Complementarity Problem (NCP).

Define the vector of class congestion control, routing and load sharing fractions

as well as Lagrange multipliers:

Z(t) = | $qg(t) o BEpugy o Qiag(t) wove Yoy (8) o @5 (8) )T
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and the vector of class derivative of the Lagrangian with respect to the conges-

tion control, routing and load sharing fractions as well as Lagrange multipliers:

[ 8H" JHe |
VL(Z{t)) = |w (3&[ o QE[,ﬂzjff}) (@cﬂ“[ - Qi[,dj(f])
o|sd| | | ad

- (l—ﬂﬁz[ad](f)* > Eﬁfr[.;d](t))

#[ad}EHf.d]

Theorem :

Consider the dynamac join load sharing, routing and congestion control problem
in distributed systems with multiple competing classes, with fized initial time ty and
final time ty.

If for each class c,

g¢ is differentiable and conver in (®(t), ¥<(t)) € (RC®,LS"), for each fized
value of (®(¢), ¥i(t),..., 7 (¢), ¥ 1(¢t),..., TTI(¢), ®TI(¢),..., (¢), ¥e(¢t))

e (RCY, LS, ....RC 1, LS, .., RC LS, ..., RCF, L§%)

then (@*(¢), ¥*(t)) € (RC,LS) s a Nash equilibrium if and only if it solves
the following Nonlinear Complementarity Problem ¥ t € [to,ty]:

VIL(Z*(t))*Z*(t) =0
VL(Z*(t)) > 0

Z*(t) > 0

X*(t) = £(¢,X*(t), 8*(t), ¥*(t))

X*(to) = Xo

Pe(t) = —Vx He(¢,X*, ®*(¢), T*(¢), P(t)) V¢
Pl =0 Ve
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Proof: After some algebraic manipulations, we find that the NCP: VL(Z(t))
Z(t) =0; VL(Z(t)) > 0; Z(t) > 0 with Z(t) and VL(Z(t)) as defined above, is

equivalent to the Pontryvagin’s maximum principle necessary conditions. O

5.2.4 Variational Inequality Formulation

In this section, we formulate the dynamic non-cooperative load sharing, routing
and congestion control problem as a Variational Inequality Problem (VIP).

Define the vector of class congestion control, routing and load sharing fractions:

. , . ¥
(‘I’[t}“l’{t” - [ qbf:ud]{.t) I"ﬂﬂr{rlsr::i]{:t) wﬁ:d](t) ]

as well the vector of class derivatives of the cost function with respect to the

congestion control, routing and load sharing fractions:

ik GH°  OH
2.

VH(t,X(t),®(t), ¥(¢),P(t)) = " — s
0 sdemry, 9% OV

Theorem :

Consider the dynamic join load sharing, routing and congestion control problem
in distributed systems with multiple competing classes, with fized initial time t, and
final time t5.

Let for each class c, g°(t, X, ®,¥), f(t,X, P, ¥), be continuously differentiable
with respect to (X, ®,¥) € (R",®,¥) V tE [to,ts]. If H is continuously differ-
entiable and convez in (X, ¢, ¥°) € (R", RC,LS®), VYt € ltg,ts], for each fized
value of

(@7(t), ¥(t), ..., BH(t), w(t), @TI(E), WTH(2), ..., BE(2), ®E(2))

€ (RCY, LS, ...,RC', LS, RC“", LS, .., RCY,LSY),

then (‘I"(t),‘l’*( )) € (RC,LS) is a Nash equilibrium if and only if it solves

the following Variational Inequality Problem ¥ t € [tg,t4] :
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VH(t,X*(t),®"(¢), 2 (¢), P(t)) = (2, %) — (2°(¢), ¥*(¢))) 2 0
v (®,¥) € (RC,LS)

X*(t) = (f X*(t), ®(t), ¥*(1))

X*(to) =

Pe(t) = —T}(HC(t X*, @*(t), ¥*(t),Pe(t)) Ve
Pe(ty) = V¢

Proof: If (®°*(t), ¥°*(t)) is a local minimum for the following minimization

problem
minimaize ! g°(t, X(t), il el U S )dt
to WI*(¢), ..., ¥(t),..., BO*(t)
with respect to (P°(t), Te(t))
such that X(t) = f(t,X(t), ®(t), ¥(t))
X(to) = Xo

(e(t), T(t)) € (RC, LS°)

and ¢¢ is a continuously differentiable convex function over the nonempty con-

vex, closed and bounded set (RC®, LS¢), then V&([to, t4]:

‘aHE-

aH*<*
S x (g — () + D
ac't}cr[ad] o] - ﬂ.[dd}EHfl Ehi)# [ad]

* (@7(sd) — Prisa)lt)) +

« (45 —wf"‘:d](m} >0 V(&%) € (RC],LSY), c
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Summing over all classes

gH | " .
B { * (Dglea] — Pofsa)(t)) +

c
¢ (sdiesDs | 995(sq)

cht -
. * (Blrpg — B, (t)) +

mlsd]e I 9, aqﬁr [sd]

SH*" o
(Y — YEa(E) P 20V (8, ¥°) € (RCE,LS°)

awfad] r

d

Another equivalent VIP formulation is given in the following Theorem:

Theorem :

Consider the dynamic join load sharing, routing and congestion control problem
in distributed systems with multiple competing classes, with fized initial time tg and
final time t¢.

Let for each class ¢, g°(t, X, ®,¥), f({,X,®, ¥), be continuously differentiable
with respect to (X, ®,¥) € (R",®,¥) VYV tE [to,ty]. If H® is continuously differ-
entiable and convez in (X, ®°, ¥°) € (R, RC°,LS®), Vt € [to,ts], for each fized
value of

(B(t), ®(t),..., D7 (), T1(2), ®TI(¢), WeTI(¢E), ..., ®C(t), ®e(t))

E{RC' LS ,...,; RC, L8, RC-* . L§",..., RC®, L§®),

then (®*(t), ¥*(¢t)) € (RC,LS) s a Nash equilibrium if and only if 1t solves
the following Variational Inequality Problem WV t € [to,t4]:

VL(Z(t)*)* (Z-Z(t)*) >0 VZ>0

X*(t) = f(t X*(t), ®°(t), B*(t))

X*(to) =
Pe(t) = —vxﬂf(t X*, &*(t), (), P<(t)) ¥ c
Pi(t;)=0 ¥e

and the VIP: find z* such that f(z*)*(z —z*) >0 Vz >0

are equivalent.

Proof: The NCP: f(z*)xz* =0 f(z*)>0 z* >0
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5.2.5 Maximum Principle for Separable Cost Functions

In this section, we derive the first order necessary conditions for a Nash equilibrium
on the path flows, when the cost function of each resource depends only on the
flow on this resource.

According to the Nash equilibrium definition, each class ¢ minimizes its cost

function ¢° given the optimum decisions of all other classes.

t $1%(1), ..., B°(1), ..., BC*(¢
MInNimize J"f;r":(t,}"f;(t), (o )ersy 2] () )dt =
to Wi(t), ..., ®(t),..., T (1)
= S [ G (K (£) AL (£), o AS (), s AC*(£))dE +
= _-‘/tu gl‘._’l‘ ’ 1] » Ay j ),...-_. ij ) eeey FAyg )
i]

b3 [ G KA (1), X(8), o A (1)) +
T Zf“gad t, X, -’d]( ] a[ad( } )‘c ,.-_\r]( ) }ngad]( ))dﬁ +
[sd]

+ Z Mtx (), A3 ()5 e AL (£)5 ooy AR (2) )it

with respect to  (®(t), ¥(t))
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such that

XEa(t) = fh (8, X5(t),8(t), ®(t)) VY ij, [sd] € SD*, &
Xbagt) = fha(t,Xi(t), ®(t), ®(t)) Vi, [sd] € SD*, &
Xiat) = gt Xoa(t), 2(2), B(2) V [sd] € SD*, &
Xfapa(t) = gt Xpa(t), 8(t), ®(t)) V [sd] € SD*, &
Xpa(te) = Xiiae v ij, [sd] € SD*, &
XEalto) = X¥ao Vi, [sd] € SD*, k
Xealte) = X400 Y [sd] € SD*, k
Xl apalte) = Xfapdo V [sd] € SD*, &

Bopa)(t) + D Sipa(t) =1 V[sd] € SD°
r{sd]€IIf

[2d]
Potad)(t)s Priaa)(t) 20 V 7(sd] € IIf,, [sd] € SD°
Uf,q(t) > 0 v [d € D), [s] € S¢
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Pontryagin's maximum principle necessary conditions are:

Xk a(t) = fE a8, X5(8), @), ®H(¢)) Y ij, [sd] € SD*, k
Xkea(t) = fha(t,Xi(t), @*(t), B (t)) Vi, [sd] € SD¥, k
Xkea(t) = 56 X0a(1), 8(2), T(t) V [sd] € SD, k
Xbwoa(t) = gt Xi(t), 8(8), T (¢)) V[sd] € SD*, k
Xk a(te) = Xhua vV ij, [sd] € SD¥, k
XEalte) = X v i, [sd] € SD*, k
XEalte) = Xidg.0 V [sd] € SD*, &
XEea(te) = Xfinao v [sd] € SD*, k
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096,48, X2, (1), 87 (1), T (1))

a‘i);[sd]

i Z Pcr{.sd]

u[-

—Q[,d]( ) c’f ]{f) = ()

gi; (. X7;(t), 2°(t), ¥*(t))

Fa (6 X (1), @°(2), (1)) -

7 [sd] € SD°, ¢

' , Bgs(t, X:(t), B*(t), T*(¢))
_|.

_; aa&:rr[ad Z aéw{ad

+>° Y sz‘;d] ) * Ve B (8 X5(2), @7(2), *(¢))+
k [sd 1]

+Z D Y PR (8) * Ve, B9 (8, X5 (), ®7(2), *(2))—

.1::'.] 1
—Qfq(t)| * &31,q(t) =0

vV wlsd] € ITf, ), [sd] € SD, ¢

-+
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Ags;(t, X2 (t). (1), U(t)) Age(t, X (t). ®*(¢), T*(t))
Z : 8 J, T Z 6‘1 +

ij ¥ [ad) i Led]

_i.

ag[;d{t Xg[,d( } )1 ‘Iﬂ{t]) —|— 8gfd](tﬁxrd](t}* @*(t}“l”(t})
O¥fea - OYfg

+320 D0 DRI (8) % Ve B (6, X55(8), @7(2), TH(2)