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Abstract— In order to personalize the assessment services, the 
assessment systems need to build suitable student models for 
heterogeneous student populations. The present study focuses 
on efficiently modeling students according to their time-varying 
behavior during web-based self-assessment, enriching the 
models with a notion of dynamics. The suggested approach 
forms and revises the student models on-the-fly, using three 
popular stream mining classification techniques. All methods 
use specific time-based features as predictors, and the students’ 
self-assessment achievement levels as target values. The 
obtained results demonstrate that level of certainty, effort and 
time-spent on answering correctly/wrongly could contribute to 
pursuing fine-grained and robust student models during self-
assessment. 

Keywords-assessment analytics; dynamic student modeling; 
response-times; stream mining; supervised classification 

I.  INTRODUCTION  
Reconsidering the personalization of quality learning and 

assessment services has emerged from the expanding 
enrollment of large numbers of students in technology-
mediated learning environments [1]. Towards this goal, 
creating more granular and solid student models is a 
prerequisite [2]. A student model summarizes multiple 
student’s characteristics, either static (gender, ethnicity, etc.) 
or dynamic (cognitive skill, emotions, etc.), extracted from 
diverse data sources into a profile representation [3].  

This study focuses on student modeling in the context of 
self-assessment. The need to accurately diagnose students’ 
abilities and needs is more imperative in self-assessment 
conditions. The reason is that self-assessment leads students 
to a greater awareness, by training them to self-regulate their 
motivation and behavior, as well as by fostering reflection on 
their own progress in knowledge, skills, or processes, and 
finally, to understanding themselves as learners [4].  

In order to support students to become better learners, we 
need to deliver to each individual the most appropriate self-
assessment material. For this purpose, we need to develop 
personalized self-assessment systems that compile the 
students’ attributes into fine-grained student models. Next, 
these systems will consult the student models to facilitate the 
assessment material selection process. Thus, the information 
included in the student models needs to be selected upon 
rigorous criteria and has to be gradually incorporated. 

Towards this information “filtering” and “integration”, 
assessment analytics could shed light to what should be 
included or not; an assessment analytics procedure “monitors, 

tracks and records data related to the context, interprets and 
maps the current state of these data, organizes them (e.g., 
filter, classify, prioritize), uses them (e.g., decide adaptations, 
recommend, provide feedback, guide the learner) and predicts 
the future state of these data” [5, p.118]. 

This study introduces a methodology for building and 
updating dynamic student models during web-based self-
assessment by making practical use of assessment analytics. 
The core idea is to classify students “on-the-fly”, using as 
predictors specific time-varying student’s features that (a) are 
strongly related to the self-assessment process, and (b) are 
good estimators of students’ knowledge, skills and abilities. In 
this paper, we benefit from advances in stream mining for 
student classification, and contribute to creating dynamic and 
robust student models. Thus, the research question is: 

“Can we build dynamic student models during web-based 
self-assessment based on students’ time-driven features?” 

In order to address this question, we conducted a study 
with the LAERS self-assessment system. Five hundred and 
three (503) undergraduate University students enrolled in a 
self-assessment procedure and were classified in real-time. 

The rest of the paper is organized as follows: in section II, 
we briefly review existing work regarding student modeling 
in self-assessment contexts. In section III, we briefly present 
the LAERS self-assessment system used in this study, as well 
as the basic features of the student models in LAERS. Section 
IV explains the methodology, the data collection process and 
the classification methods. Section V demonstrates the results 
and elaborates on our findings. Finally, section VI focuses on 
our conclusions and describes our future work plans. 

II. RELATED WORK 
Over the past decades, student modeling has attracted 

increased interest as a research topic. Significant results have 
been demonstrated and utilized for the personalization of e-
learning systems. These results originate mostly from the 
fields of intelligent learning environment [6] and cognitive 
tutors [7]. Considerable findings on student modeling are also 
evidenced in domains like MOOCs [8], gamified learning 
environments [9], and virtual learning environments [10]. 
Performance, goals, prior and acquired domain knowledge, as 
well as learning strategies, preferences and styles are among 
the most popular dynamic students’ characteristics [11] [29]. 
Communication and collaboration skills, critical and 
analytical thinking, motivation and meta-cognitive skills on a 
specific domain or topic and affective states are also 
commonly used to complement the students’ profiles [2]. In 
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[2] and [11] the authors conducted a review on key student 
models that have granted the success of intelligent learning 
environments, and a survey on student modeling, focusing on 
what to model, how and why, respectively.  

In the context of self-assessment, the prevalent approach 
was to open the student models to students, visualize students’ 
progress, and measure students’ self-reflection on their own 
skill mastery (e.g., [12] [13]). One of the objectives was to 
seek for students’ preferences, associate them to students’ 
knowledge and performance, and produce graphical views of 
this model to enhance students’ self-awareness and encourage 
them to participate in the modeling process [12]. In a “social” 
version of this approach, the researchers displayed parallel 
views of the students’ models with the cumulative model of 
the entire class [13]. From another scope, estimating students’ 
mood while undertaking the self-assessment and modeling the 
respective affective states [14] was also explored.  

The students’ attributes considered in the models included 
knowledge, cognitive and meta-cognitive skills [12] [13] [15] 
and affective states [14]. The models were constructed using 
overlay [12] or its combination with stereotypes and with 
fuzzy rules to keep the student models updated [15], or 
combined formula-based and neural network methods [14].  

Apparently, the reported experience on student modeling 
in self-assessment contexts and the practical evidence on 
revising the student models dynamically is limited. This study 
introduces a mixture of time-varying features going a step 
further from traditional approaches (e.g., [12] [15]), and 
applies stream mining for revising the student models on-the-
fly by considering changes in the states of the these features. 

III. THE LAERS ASSESSMENT ENVIRONMENT AND THE 
BASIC STUDENT MODEL FEATURES 

A. The LAERS assessment environment architecture 
The Learning Analytics and Educational Recommender 

System (LAERS) [16] is a web-based self-assessment system 
consisting of (a) a testing interface, (b) a tracker that logs the 
students’ interaction data, (c) a student modeling engine that 
shapes/revises the student models, (d) an adaptation engine 
that provides personalized feedback to the students, and (e) a 
database storing information about the students and the items.  

The first component implements the interface that displays 
the self-assessment items delivered to students separately and 
one-by-one. The interface delivers the items to the students in 
predetermined order, and it allows them to temporarily save 
their answers, to review them, to alter their initial answer 
choices, and to save new answers. Students can also skip an 
item (because they are not sure about the answer, or because 
they think it is too difficult), and answer it (or not) later. 

The second component records the students’ interaction 
data during self-assessment. In log files, it tracks and 
aggregates students’ time-spent on handling the self-
assessment items, breaking it into the time-spent on correctly 
and time-spent on wrongly answered items. The tracker also 
logs how many times the students reviewed each item, how 
many times they changed the answers, and the respective 
time-spent during these interactions. The overall logged 
features of students’ activity are listed in Table I.  

TABLE I.  FEATURES FROM THE RAW LOG FILES 

Feature 
1. student ID 10. the total time the student 

spends on viewing the items - 
submitting the correct answers

2. the item the student works on 11. the total time the student 
spends on viewing the items - 
submitting the wrong answers

3. the timestamp the student starts 
viewing an item 

12. the idle time the student spends 
viewing each item (not saving 
an answer)

4. the timestamp the student leaves 
an item (not saving an answer) 

13. the total idle time the student 
spends on re-viewing the items

5. the timestamp the student saves an 
answer

14. the student’s total idle time on 
item 

6. the timestamp the student chooses 
to re-view an item

15. how many times the student 
changes the answer to an item

7. the timestamp the student saves an 
answer after re-viewing an item 

16. how many times the student 
reviews each item

8. the answer the student saves 17. how many times the student 
views the item9. correctness of the saved answer 

The system also calculates the score (TS) for each student 
according to the correctness (0/1) of the student’s answer on 
item i, and to the difficulty of the item.  

The student modeling engine organizes the data from the 
data logs for each individual’s observed activity and prepares 
them to be loaded in the student models. The exact student 
characteristics included in the student models are synopsized 
in sub-section II.B and the methods applied for the formation 
of the respective student classes are discussed in section III. 

B. The features of the student models in LAERS 
Previous studies with the LAERS system structured a 

measurement model consisting of response-times (e.g., total 
time to answer correctly/wrongly) and latent factors (e.g. goal-
expectancy, level of certainty) in order to predict students’ test 
score (e.g., [17] [18]). The suggested measurement model was 
found to provide statistically significant explanation of the 
variance in the test score (R2 > .63), and the participating 
variables were strongly correlated to the test sore. Thus, they can 
also be considered as features for student modeling purposes. 
Furthermore, students’ effort (i.e., how engaged the students are 
during solving a task) is also proposed to be included in the 
models. Table II presents the features in the student models.  

It should be noted that goal-expectancy corresponds to the 
students’ perceptions of their desirable achievement level [19], 
measured via questionnaire prior to the self-assessment, and as a 
time-stable variable, was not admitted for student modeling. 

TABLE II.  LIST OF FEATURES IN THE STUDENT MODELS 

Variable Description Explanation Value
TTAC Total time to 

answer 
correctly

The response-time a student 
aggregates on submitting 

correct answers

0 
(msec) 

TTAW Total time to 
answer 
wrongly

The response-time a student 
aggregates on submitting the 

wrong answers

0 
(msec) 

CERT Level of 
certainty 

How certain the student 
wants to be – a measure of 

cautiousness

0-1

RTE Response 
Time Effort 

When a student exhibited 
solution behavior – a 

measure of engagement

0-1
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1) Total time-spent to answer the items: Total time to 
answer correctly (TTAC) and total time to answer wrongly 
(TTAW) are defined as the total time that students spend on 
viewing the items and submitting the correct and wrong answers 
respectively, and have been found to be highly correlated to the 
test score [17]. They are time-varying variables and indicate the 
respective response-time the students constantly aggregate on 
answering the self-assessment items. Therefore, both TTAC and 
TTAW have been included in the student models to represent 
the students’ time-varying answering behavior.  

2) Level of certainty: Certainty describes a person’s 
strength of belief about the accuracy of a choice [20]. In self-
assessment procedures, level of certainty (CERT) reflects how 
certain the students want to be before answering a question; the 
more certain the students want to be, the more the idle time they 
spend on re-viewing the items and the more the times they re-
view the items [18]. It is a time-varying latent variable that 
comprises two sub-parameters: (a) the total idle time the students 
spend re-viewing each item, and (b) how many times the 
students review each item. Overall, CERT is a time-varying 
measure of students’ cautiousness during the self-assessment.  

3) Effort: According to [21, p. 158], effort is “the 
motivational state commonly understood to mean trying hard or 
being involved in a task”; it is about how much engaged the 
students are in answering the items. Response Time Effort 
(RTE) measures the proportion of items which the students try 
to solve instead of guessing the answers [22], according to a 
threshold value, discriminating solution behavior from guessing. 
Less engaged students will answer too quickly, before they had 
time to fully consider the items. In self-assessment procedures 
where the students usually focus on their attainment, the time-
varying effort is a critical factor reflected in the student models. 

C. The target classes of the student models in LAERS 
The feature space of the student models in LAERS 

includes the time-varying variables (i.e., TTAC, TTAW, 
CERT, RTE). The target class is one of the two different cases 
for the levels of achievement that are available in LAERS, 
depending on the students’ score; (a) two-levels, namely 
“pass” and “fail”, and (b) three-levels, corresponding to the 
commonly adopted stereotypes, i.e., the “advanced”, the 
“intermediate”, and the “novice”.  

IV. METHODOLOGY 

A. Research participants and data collection 
Data were collected with the LAERS environment at a 

European University during a self-assessment procedure. Five 
hundred and three undergraduate students (231 males [45.9%] 
and 272 females [54.1%], aged 19-28 years old (M=20.21, 
SD=1.483, N=503)) answered on 45 multiple choice items, 
prior to their participation to the final exams. We asked two 
instructors to rate all items for their difficulty (easy, medium, 
hard). The instructors agreed on the items’ difficulty, and each 
item contributed differently to the overall score, ranging from 
0.8 points (easy) to 1.2 points (medium) and to 2 points (hard).  

The participation to the procedures was optional. All 
participants signed an informed consent form that explained 
to them the procedure and was giving the right to researchers 
to use the data collected for research purposes. Students were 
aware that their answers were being tracked, but not their 
time-spent, because we wanted them to act spontaneously. 

B. Stream mining classification methods 
A critical problem in real-time applications was the 

continuous supply of rapidly grown data that evolve over time. 
This urgent situation led to the rise of the stream mining 
paradigm [23]. The core assumption is that training examples 
can be inspected a single time only; they arrive in a stream and 
next, they must be discarded to make room for subsequent 
examples. A widespread technique for data stream mining is 
the use of a sliding window to keep only a representative 
portion of the data. The training window size can be fixed or 
variable over time [28], and the data is assumed to have a 
small and fixed number of features and typically less than ten 
possible class labels, stationary or evolving [24]. In this study, 
we explored: 

1) HoeffdingTree: an algorithm that incrementally 
induces a decision tree from a data stream, inspecting each 
example in the stream only once, assuming that the 
distribution generating examples does not change over time. 
A HoeffdingTree may choose an optimal splitting feature 
from a small sample, using the Hoeffding bound to decide 
how many examples are needed to assure that the chosen 
attribute using the bound is the closest to the attribute chosen 
when infinite examples are present into the classifier [25]. 

2) OzaBag: an online version of Bagging ensembles for 
data streams that simulates the process of bootstrap replicates 
to get an aggregated predictor. The probability that any 
individual example will be chosen for a replicate is 
determined by a Binomial distribution and tends to a 
Poisson(1) distribution, because in streams of arbitrary 
length, the number of examples N → ∞ [26]. 

3) Perceptron: an example of reinforcement learning that 
employs a sigmoid activation function in order to optimize 
the squared error (having one perceptron per class value) and 
to minimize the number of misclassified examples [27].  

C. Measures and Performance Criteria 
Measuring data stream classification performance 

involves space (the available memory is usually fixed), 
learning time (i.e., processing incoming examples at the rate 
they arrive) and accuracy. The most popular evaluation 
method is the Predictive Sequential (prequential) error 
estimation [28]. The prequential error allows to monitor the 
evolution of the streaming classifiers and evaluates the 
performance of the models by testing each example and then 
using it for training in sequence. Furthermore, the Kappa 
statistic and the Temporal Kappa Statistic (Ktemp) measure 
performance of streaming classifiers [28]. The Kappa statistic 
measures the agreement of the prediction with the true class. 
A value of Kappa equals to 1.0 signifies complete agreement. 
Ktemp values ranges between (1, - ) and equals 1.0 if the 
classifier is accurate. We implemented the stream mining 
classification in the MOA framework [24]. 
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Figure 1.  Illustration of the overall student modeling methodology. 

Figure 1 illustrates the overall student modeling methodology followed, 
from the data gathering phase to shaping the complete student models. 

V. RESULTS 
In this section, we present and discuss the results obtained 

during the experimental phase, throughout the data stream 
(sample size: ~2.3MB). We measured the accuracy and 
learning time for each of the compared classification 
algorithms. We implemented a fixed window approach and 
explored two different windows sizes (100, 500). Initially, the 
window is created with the first w labeled records, where w is 
the size of the window. After that every sample is used for 
classification and evaluation of the performance, and then it is 
used to update the window. The average classification 
accuracy for all methods was 77% when the predicted classes 
were three, and 83% when the predicted classes were two.  

A. Data Stream Classification results 
In this study, we explored the previously described stream 

mining classification methods with the same group of 
features. Tables III and IV summarize the classification 
performance results, in terms of accuracy and time, for the 
three methods used to develop the classification models in this 
study with windows sizes 100 and 500 respectively. As seen 
from table III, when the window size is 100 and the predicted 
classes are three, OzaBag is slightly more accurate (80%) than 
HoeffdingTree (79%) and Perceptron (70%), at a higher cost 
in terms of time (0.84sec vs. 0.32sec vs. 0.53sec). On the other 
hand, when the predicted classes are two, Perceptron achieves 
its highest accuracy (83%) compared to the HoeffdingTree 
(82%), with a small cost in time (0.61sec vs. 0.50sec), but with 
better learning time than that of OzaBag (1.09sec), which 
predicts 82% of the correctly classified examples as well. 
From Table IV it becomes apparent that as the window size 
increases, the cost in time increases as well, while accuracy 
appears to be stable.  

TABLE III.  PERFORMANCE METRICS FOR STREAMING 
CLASSIFIERS  WITH W=100 

Classifier Hoeffding Tree OzaBag Perceptron
Classes 
Predicted 2 3 2 3 2 3 
Accuracy 0.82 0.79 0.82 0.80 0.83 0.70 
Kappa  0.64 0.63 0.63 0.64 0.64 0.46 
Ktemp 0.65 0.65 0.64 0.66 0.65 0.50 
Time 0.50s 0.32s 1.09s 0.84s 0.61s 0.53s 

TABLE IV.  PERFORMANCE METRICS FOR STREAMING 
CLASSIFIERS WITH W=500 

Classifier Hoeffding Tree OzaBag Perceptron
Classes 
Predicted 2 3 2 3 2 3 
Accuracy 0.81 0.77 0.82 0.79 0.82 0.69 
Kappa 0.63 0.61 0.61 0.63 0.64 0.43 
Ktemp 0.65 0.63 0.62 0.65 0.64 0.48 
Time 1.26s 0.98s 3.14s 2.03s 1.82s 1.73s 

B. Discussion 
As seen from the previous analysis, the results from the 

stream mining classification indicate that TTAC and TTAW 
in combination with level of certainty and effort could 
efficiently be used for classifying and modeling students 
during the self-assessment. Concerning the specific features 
in the models, students in higher achievement classes (i.e., 
advanced and pass) obtain the best scores and exhibit the 
highest response-times to answer correctly and the lowest total 
spent-time on wrongly answered items. These students are 
classified with the highest levels of certainty and the highest 
effort expenditure. The range of TTAC values is a bit lower 
for medium achievement class members (i.e., intermediates), 
who however, appear to spend higher total time to review the 
questions (which is a factor loading on the level of certainty). 
The major difference between these two classes is identified 
in the TTAW factor, which for medium classes members 
appears to be higher. As such, this variable could be used for 
discriminating the two classes. Similarly, students in lower 
achievement classes (i.e., novices and fail) exhibit minimum 
engagement with the self-assessment items in terms of time-
spent, denoting low levels of cautiousness and low effort 
expenditure. More precisely, students in these classes 
aggregate the higher response-times on TTAW and the lower 
time-spent on TTAC. For the lower achievement students, 
level of certainty and effort get their lower values, as well. 

However, one can observe that the classification accuracy 
increases as the number of the predicted classes decreases. 
That might happen because the classes that are combined in 
the revised models have a significant number of examples that 
are misclassified between them in the former models. Thus, 
reducing the number of predicted classes will decrease the 
misclassification errors.  

VI. CONCLUSIONS AND FUTURE WORK 
Towards delivering to students the most appropriate self-

assessment items and supporting them to become better 
learners, a pre-requisite that needs to be addressed is 
dynamically shaping and revising the student models. 
However, only a limited number of studies provided practical 
evidence on updating the student models on-the-fly in self-
assessment settings. Our vision was to shape and update 
dynamic student models, using stream mining to efficiently 
classify and dynamically model students during self-
assessment. The major findings of this study are: 

1) the suggested HoeffdingTree, OzaBag and Perceptron 
algorithms achieve (similar) high classification accuracy, 

2) learning time of OzaBag is significantly higher than that of 
HoeffdingTree and Perceptron, 
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3) learning time of HoeffdingTree is the lower compared to the 
respective learning time of OzaBag and Perceptron, 

4) students assigned to the higher achievement classes score 
high in TTAC, CERT and RTE, and score low in TTAW, 

5) students assigned to the lower achievement classes score 
high in TTAW, and score low in TTAC, CERT and RTE, 

6) students assigned to the medium achievement classes 
aggregate considerable amounts of times both in TTAC and TTAW. 
They score medium in CERT and RTE. 

Based on the above, this work contributes in the field of 
student modeling as follows:  

1) it introduced a set of specific students’ features (i.e., total 
time to answer correctly/wrongly, level of certainty, effort), and 
elaborated on their roles in the student models, and 

2) it implemented a methodology for revising the student 
models on-the-fly by considering changes in the states of the models.  

The mechanisms for tracking response-time data are cost-
effective and can be easily implemented in any assessment 
system. The temporal factors are not contextualized in 
LAERS, but a similar tracker could be embedded in any 
adaptive learning or assessment system. Applying the 
suggested methodology in other assessment contexts is a 
challenging future work task. Moreover, other features (e.g. 
time-spent that corresponds to the level of difficulty of the 
items) could also participate in the student models to quantify 
the student’s current level of knowledge. Enhancing the student 
models with these features is within our future work plans. 
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