
LEARNING AUTOMATA ROUTING

IN CONNECTION-ORIENTED NETWORKS

Anastasios A. Economides

University of Macedonia
Thessaloniki 54006, GREECE

Tel # +3031-891799
Fax # +3031-891292

economid@macedonia.uom.gr

20 March 1995

1

Φιλίπ
Text Box
Economides, A.A.: Learning automata routing in connection-oriented networks. International Journal of Communication Systems, Vol. 8, No. 4, pp. 225-237, 1995.



Abstract

Learning automata are used at the source nodes of a connection-

oriented network to dynamically route newly arriving virtual calls to

their destination.

First, two new learning automata are introduced. Then, these two

learning automata, as well as the well-known L learning automaton

and the deterministic shortest-path algorithms are used in a simula-

tion program to route virtual calls. The more frequent the updating

and the more recent network state information used, the better the

performance.

In the sequence, the virtual link length is developed as a function

of both the number of packets and the number of virtual calls at the

network link. This virtual link length is used in the learning automata

routing algorithm and is showed via simulation to be superior to the

minimum packet delay or shortest-queue-type link length, usually used

in real networks. Thus, in connection-oriented networks, not only the

packet but also the virtual call traffic characteristics should be used

in the routing decisions.

Furthermore, when the network state information is out-of-date,

or when there are few virtual calls and each one carries a large number

of packets, then the virtual link length should be based more on the

number of virtual calls than on the number of packets at this link.

On the other hand, when the network state information is current

and there are many virtual calls and each one carries a small number

of packets, then the virtual link length should be based more on the

number of packets than on the number of virtual calls at this link.

Key-words: connection-oriented networks, learning automata routing, simu-
lation, virtual calls, virtual circuit networks.

2



1 INTRODUCTION

Dynamic routing in connection-oriented or virtual circuit networks is the
selection for every newly arriving virtual call of the currently best path from
its source to its destination node. Dynamic routing may be implemented
according to two ways:

1) In deterministic routing, the selection of a route from source to des-
tination is done deterministically. If our network model is correct and the
network state does not change drastically from the moment we measure it
until we make the routing decisions, then we may act with confidence (in
a deterministic way) that our routing decisions are correct. One possible
rule to achieve the optimal routing is with a weighted round-robin fashion.
Another possible rule is to select a route if the cost of this route is less than
the cost of all other possible routes.

2) In probabilistic routing, the selection of a route from source to desti-
nation, is done probabilistically. Note, that deterministic routing is a special
case of probabilistic routing (with probability 1). Solving the routing problem
in computer networks, we only find (if we can) the ”solution” to an approx-
imation of the real problem. The underlying assumptions of the model (e.g.
independent exponential distributions), or even other management problems
that are not explicitly considered, affect the ”solution”. Thus, instead of
using a definitive decision (by completely trusting the optimality conditions
and the measurements) a probabilistic one may be used favoring some action.

In this paper, we propose such a probabilistic routing approach based
on learning automata algorithms. These are adaptive control algorithms
for highly uncertain systems [20]. They select probabilistically an action
and then update their action probabilities according to the outcome of the
selected action. If the outcome is favorable, then the probability of the se-
lected action increases, otherwise it decreases. So, instead of deterministically
choosing an action, learning automata choose it with very high probability.
Note, that if we appropriatelly calibrate the step size of these learning au-
tomata algorithms, then they may choose an action deterministically (with
probability 1).

The greatest potential of the learning automata methodology is that it
permits the control of very complex dynamic systems. Even when little
information is available, they act to minimize the effects of future system
changes. Learning automata have been applied to routing problems like

3



telephone routing [1, 21, 22, 24, 28, 29], datagram routing [5, 11, 14, 15,
18, 26, 27], and virtual circuit routing [10, 8]. British Telecom has already
developed a learning automata routing system for use in their long distance
network [4].

Glorioso, Grueneich & Dunn [14] use learning automata for routing. If
a call is successful through a path, the probability of using the same path
is increased, otherwise it is decreased. Simulation results show the ability
of learning automata to route the traffic around the destroyed portions of
the network and provide an improved grade of service. Glorioso, Grueneich
& McElroy [15] equalize the loading on the network links using learning
automata routing. They demonstrate the ability of learning automata to
adapt to a loss of network facilities and to operate with uncertain network
facilities.

Narendra, Wright & Mason [24] use the M automaton for telephone call
routing. An action corresponds to a sequence of alternate paths to be at-
tempted. The penalty probability of each action is updated according to
the success or blocking of the telephone call. At overload conditions, learn-
ing automata routing results in a lower blocking probability and lower node
congestion compared to fixed rule alternate routing.

Narendra & Thathachar [22] introduce two new models of nonstationary
random environments. When an action is performed, its penalty probability
increases while the penalty probabilities of the other actions decrease. They
prove that the LR−P automaton operating in such environment tends to
equalize the expected penalty probabilities. Simulation of telephone call
routing confirms the equalization of the blocking probabilities.

Chrystall & Mars [5] route messages over the outgoing links using learning
automata at every network node. The delay experienced by every message is
used to update the probability of selecting the same link again. They point
out that the LR−I automaton attempts to equalize the average path delays,
while the LR−P automaton attempts to equalize the accumulated path delays.

Srikantakumar & Narendra [28] analyze nonstationary environments where
the penalty probabilities are functions of the action probabilities. They prove
that the LR−P automaton equalizes the penalty rates, while the LR−εP au-
tomaton equalizes the penalty probabilities. For telephone call routing, the
LR−P automaton attempts to equalize the rates of the call blocking proba-
bilities, while the LR−εP automaton attempts to equalize the call blocking
probabilities. Further simulation results by Narendra & Mars [21] verify the

4



behavior predicted by the theoretical analysis.
Mason [18] proposes new learning automata algorithms to route packets

in packet switched networks. The routing parameters are updated according
to the packet delays on the links. Simulation results show the superiority of
the learning automata routing over fixed and random routing.

Akselrod and Langholz [1] show via simulation that learning automata
routing performs better than fixed routing for telephone networks. Further-
more, they introduce a penalty function of the number of calls on each trunk
group to represent its load.

Nedzelnitsky and Narendra [26] propose a new model for nonstation-
ary enironments whose penalty probabilities depend on the previous penalty
probabilities and on the probabilities of the performed actions. Then they
simulate routing in datagram packet switched network by learning automata
at every network node. The SLR−I and SLR−εP automata equalize the de-
lays, while the SLR−P automaton equalizes the delay rates.

Zgierski & Oommen [29] show via object-oriented simulation the superi-
ority of learning automata telephone call routing to fixed rule and random
routing in terms of call blocking probability. Their simulation environment
uses any of the M-automaton, several linear learning automata, the corre-
sponding discrete learning automata and their absorbing versions.

Economides & Silvester [11] propose learning automata for routing pack-
ets in a network with unreliable links. The routing probabilities are updated
according to the success or failure of packet transmission, or according to the
marginal packet delays over the unreliable links. Learning automata are also
used to estimate the link error rates.

Economides, Ioannou & Silvester [10] propose learning automata for rout-
ing virtual calls. The routing probabilities are updated according to the
unfinished work on the paths. Simulation results show equalization of the
unfinished work on the paths. Furthermore, two other extensions on the
learning automata updating algorithms are proposed: the multiple response
learning automata (which are analyzed mathematically in [9]), and the vir-
tual updating learning automata.

In this paper, we extend our results on introducing learning automata
[10] at the source nodes of the network to dynamically route newly arriving
virtual calls to their destination. In section 2, we introduce two new learn-
ing automata and propose the learning automata routing of virtual calls in
connection-oriented networks. In section 3, we simulate virtual circuit net-

5



works and use the two new learning automata, as well as the L learning
automaton and the deterministic algorithm for routing newly arriving vir-
tual calls. We find that the more frequent the updating and the more recent
information used, the better the performance.

In section 4, we develop a new measure of the link load, the virtual link
length, which is a function of both the number of packets and the number
of virtual calls at this link. We use it to update the learning automaton
routing algorithm, that probabilistically routes every newly arriving virtual
call. We show via simulation that this virtual link length is superior to the
minimum packet delay or shortest-queue-type link length, usually used in real
networks [2, 3, 12, 13, 16, 17, 19, 25, 30]. Furthermore, when the network
state information is out-of-date, or when there are few virtual calls and each
one carries a large number of packets, then the number of virtual calls should
weight more in the virtual link length than the number of packets. On the
other hand, when the network state information is current, and there are
many virtual calls and each one carries a small number of packets, then the
number of packets should weight more in the virtual link length than the
number of virtual calls. Finally, in section 5, we summarize the results.

2 LEARNING AUTOMATA AS ROUTERS

In this section, we apply three learning automata algorithms to the routing
problem in virtual circuits networks [8]. In these networks, a call set-up
packet, which may be part of the first packet of a message, initiates the
establishment of a virtual circuit from source to destination. All other packets
belonging to this message follow the same route which remains fixed for the
duration of the call [6, 7].

The formulation of the routing problem can be done either on the link
flow space or on the path flow space. In future high speed computer commu-
nication networks, the transmission delay will be extremely low and we will
not want to spend extra time in network management decisions inside the
network. Therefore, the computationally intensive processes, such as the net-
work management decisions, will be transferred outside of the network either
to the source or to the destination node. With this in mind, we formulate
the routing problem on the path flow space, which means that the control
decisions will be done at the source nodes. In this way, we also avoid loops,

6



since the virtual calls will follow a previously determined loop free path.
Since network conditions change very rapidly, the minimum length path

at a time instant may not be the same at the next time instant. Also,
the information about the network state is always obsolete and inacurrate.
Therefore the routing decisions should not overreact and immediately send
a new virtual call along the minimum length path to its destination. The
system management decisions should fast track the current network state but
without introducing instability.

The proposed dynamic virtual call routing algorithms are based on a
Probabilistic Selection of the Minimum Length Path idea [10]. Instead of
using a definitive decision as to where to send a newly arriving virtual call,
we vary the routing probabilities favoring the minimum length path.

Every source node [s.] has a learning automaton, for every destination
node [.d], that routes newly arriving virtual calls at node [s.] and destined
for node [.d]. These learning automata operate asynchronously and base their
decisions on the current network state. The actions, a(n), of each automaton
are to select some particular path π[sd] to the destination node [.d].

The automaton selects action a(n) = aπ[sd] with probability Pπ[sd](n). Ac-
tion a(n) becomes input to the environment. If this results in a favorable out-
come for the network performance, then the probability Pπ[sd](n) is increased
(rewarded) by ∆Pπ[sd](n) and the Pp[sd](n), ∀p[sd] 6= π[sd], are decreased by
∆Pp[sd](n). Otherwise, if an unfavorable outcome happens, then the Pπ[sd](n)
is decreased (penalized) by ∆Pπ[sd](n) and the Pp[sd](n), ∀p[sd] 6= π[sd] are
increased by ∆Pp[sd](n).

The simplest information that someone can measure and transfer about
the network state is the packet delay through each path from source to des-
tination. Measurements of the packet delay are also used in the ARPANET
routing [13, 16, 17, 30] as well as in the Internet routing [19, 25].

In the deterministic shortest-path algorithm, we send a newly arriving
virtual call along the minimum packet delay path. However, in the three
learning automata algorithms proposed in the next paragraphs, instead of
using a definitive decision as to where to send a newly arriving virtual call,
we vary the path routing probabilities favoring the minimum delay path.
Note that the deterministic shortest-path algorithm is a special case of the
learning automata algorithms, since by suitably tuning the parameters, we
can select the minimum length path with probability 1.

The values for the reward and penalty parameters in the learning au-

7



tomata should be chosen by experimentation for specific network topology,
number of paths between source-destination pairs, traffic characteristics, in-
formation about the network state, updating time interval and other vari-
ables. For uniformity across all three learning automata algorithms, we
wanted to use the same reward and penalty parameters. After a lengthy
experimentation, we found that the values of reward parameter = 0.2 and
penalty parameter = 0.8 achieve good performance for all three learning au-
tomata algorithms. However, as we show in section 3, there exist other values
for these parameters in each one of the three learning automata algorithms
that result in better performance.

2.1 L

The first algorithm uses the well known L learning automaton [23, 20] with
reward parameter α = 0.2 and penalty parameter β = 0.8. When an action
is attempted at time n, the L automaton increases at time n+1 the action’s
probability by an amount proportional to one minus its value at n for a
favorable response and decreases it by an amount proportional to its value
at n for an unfavorable response. In our case, if the selected path has the
minimum packet delay at the next iteration, then we increase the probability
of selecting it again, otherwise we decrease it. More specifically:

Let path π[sd] is selected for the vth virtual call.

Update the probabilities at time instances n until the (v + 1)th virtual call

arrives:

If Tπ[sd](n) ≤ min
p[sd]

{Tp[sd](n)}, then

Pπ[sd](n + 1) = Pπ[sd](n) + 0.2 ∗ [1 − Pπ[sd](n)]
Pp[sd](n + 1) = Pp[sd](n) − 0.2 ∗ Pp[sd](n) ∀ p[sd] 6= π[sd]

else
Pπ[sd](n + 1) = Pπ[sd](n) − 0.8 ∗ Pπ[sd](n)

Pp[sd](n + 1) = Pp[sd](n) + 0.8 ∗
[

1 − Pp[sd](n)
]

∀ p[sd] 6= π[sd]

Select the path for the (v + 1)th virtual call probabilistically according to

Pp[sd](v + 1) ∀p[sd].

8



Thus, let path π[sd] is selected for the vth virtual call. Then, we measure
the average packet delay over the selected path π[sd], Tπ[sd], as well as over
the other paths p[sd], Tp[sd], during an updating time interval (n, n+1]. If the
delay over the selected path is less that the delay over the other paths, then we
increase the probability of selecting the same path again, Pπ[sd], and decrease
the probability of selecting any other path, Pp[sd]. Otherwise, if the delay over
the selected path is not the minimum, then we decrease the probability of
selecting the same path again, Pπ[sd], and increase the probability of selecting
any other path, Pp[sd]. This updating process is repeated until the next
v + 1 virtual call arrives. At that moment, this new virtual call is routed
probabilistically, according to the current routing probabilities, along a path.

2.2 MRL

The second algorithm uses the S-model Multiple Response Linear (MRL)
learning automaton. The norms of behavior for the Q-model MRL learn-
ing automaton are investigated in [8, 9]. The idea for the MRL learning
automata is to use different adaptation rates for different environment re-
sponses. We consider two response and penalty regions for the algorithm
and the functions that define these regions are linear functions with param-
eter 2. When the selected path gives very good performance (very small
delay), then we increase the probability of the selected path very fast. When
the selected path gives almost good performance (small delay), then we in-
crease the probability of the selected path slowly. Correspondingly, when the
selected path gives very bad performance (very large delay), then we decrease
the probability of the selected path very fast. When the selected path gives
almost bad performance (large delay), then we decrease the probability of the
selected path slowly. Here, we take as reward parameters α1 = 0.8 (excellent
choice), α2 = 0.2 (good choice, but not excellent) and penalty parameters
β2 = 0.8 (bad choice), β1 = 1 (very bad choice). More specifically:

Let path π[sd] is selected for the vth virtual call.

Update the probabilities at time instances n until the (v + 1)th virtual call

arrives:

9



If Tπ[sd](n) ≤ min
p[sd]

{Tp[sd](n)/2}, then

Pπ[sd](n + 1) = Pπ[sd](n) + 0.8 ∗ [1 − Pπ[sd](n)]
Pp[sd](n + 1) = Pp[sd](n) − 0.8 ∗ Pp[sd](n) ∀ p[sd] 6= π[sd]

If min
p[sd]

{Tp[sd](n)/2} < Tπ[sd](n) ≤ min
p[sd]

{Tp[sd](n)},

Pπ[sd](n + 1) = Pπ[sd](n) + 0.2 ∗ [1 − Pπ[sd](n)]
Pp[sd](n + 1) = Pp[sd](n) − 0.2 ∗ Pp[sd](n) ∀ p[sd] 6= π[sd]

If min
p[sd]

{Tp[sd](n)} ≤ Tπ[sd](n) ≤ min
p[sd]

{2 ∗ Tp[sd](n)},

Pπ[sd](n + 1) = Pπ[sd](n) − 0.8 ∗ Pπ[sd](n)

Pp[sd](n + 1) = Pp[sd](n) + 0.8 ∗
[

1 − Pp[sd](n)
]

∀ p[sd] 6= π[sd]

If min
p[sd]

{2 ∗ Tp[sd](n)} ≤ Tπ[sd](n),

Pπ[sd](n + 1) = Pπ[sd](n) − 1 ∗ Pπ[sd](n)

Pp[sd](n + 1) = Pp[sd](n) + 1 ∗
[

1 − Pp[sd](n)
]

∀ p[sd] 6= π[sd]

Select the path for the (v + 1)th virtual call probabilistically according to

Pp[sd](v + 1) ∀p[sd].

The algorithm works as follows: let path π[sd] is selected for the vth

virtual call. Then, we measure the average packet delay over the selected
path π[sd], Tπ[sd], as well as over the other paths p[sd], Tp[sd], during an
updating time interval (n, n + 1].

If the delay over the selected path is smaller than half of the minimum de-
lay over the other paths, then we rapidly increase the probability of selecting
the same path again, Pπ[sd], and rapidly decrease the probability of selecting
any other path, Pp[sd]. If the delay over the selected path is larger than half
the minimum but smaller than the minimum delay over the other paths, then
we slowly increase the probability of selecting the same path again, Pπ[sd],
and slowly decrease the probability of selecting any other path, Pp[sd].

Otherwise, if the delay over the selected path is larger than the minimum
but smaller than double the minimum delay over the other paths, then we
slowly decrease the probability of selecting the same path again, Pπ[sd], and
slowly increase the probability of selecting any other path, Pp[sd]. If the delay

10



over the selected path is larger than double the minimum delay over the other
paths, then we rapidly decrease the probability of selecting the same path
again, Pπ[sd], and rapidly increase the probability of selecting any other path,
Pp[sd].

This updating process is repeated until the next v +1 virtual call arrives.
At that moment, this new virtual call is routed probabilistically, according
to the current routing probabilities, along a path.

2.3 SDL

Finally, the third algorithm uses the State Dependent Linear (SDL) learning
automaton [8]. The idea for the SDL learning automaton is to make the
reward and penalty parameters functions of the difference of the average
delay of the selected path and the maximum average delay of the other paths
between this source-destination. We use the exponential function in order
to emphasize the difference in the delays. Then, the smaller the delay of a
path, the more probable its selection. More specifically:

Let path π[sd] is selected for the vth virtual call.

Update the probabilities at time instances n until the (v + 1)th virtual call

arrives:

If Tπ[sd](n) ≤ min
p[sd]

{Tp[sd](n)}, then

Pπ[sd](n + 1) = Pπ[sd](n) + 0.2 ∗ (1 − e
[Tπ[sd](n) − max

p[sd]
Tp[sd](n)]

) ∗ [1 − Pπ[sd](n)]

Pp[sd](n + 1) = Pp[sd](n) − 0.2 ∗ (1 − e
[Tπ[sd](n) − max

p[sd]
Tp[sd](n)]

) ∗ Pp[sd](n)
∀ p[sd] 6= π[sd]

else

Pπ[sd](n + 1) = Pπ[sd](n) − 0.8 ∗ e
[Tπ[sd](n) − max

p[sd]
Tp[sd](n)]

∗ Pπ[sd](n)

Pp[sd](n + 1) = Pp[sd](n) + 0.8 ∗ e
[Tπ[sd](n) − max

p[sd]
Tp[sd](n)]

∗
[

1 − Pp[sd](n)
]

∀ p[sd] 6= π[sd]

Select the path for the (v + 1)th virtual call probabilistically according to

Pp[sd](v + 1) ∀p[sd].

11



So, let path π[sd] is selected for the vth virtual call. Then, we measure
the average packet delay over the selected path π[sd], Tπ[sd], as well as over
the other paths p[sd], Tp[sd], during an updating time interval (n, n + 1].

If the delay over the selected path is smaller than the delay over the other
paths, then we increase the probability of selecting the same path again,
Pπ[sd], and decrease the probability of selecting any other path, Pp[sd]. If the
difference of the delay of the selected path minus the maximum delay over
the other paths, Tπ[sd]− max

p[sd]
Tp[sd], is large, this means that the selected path

has very good performance. In this case, the function exp[Tπ[sd]− max
p[sd]

Tp[sd]]

approaches the 0. Therefore, the probability for the selected path, Pπ[sd],
increases very fast. If this difference is small, this means that the selected
path has marginally good performance. In this case, the function exp[Tπ[sd]−
max
p[sd]

Tp[sd]] approaches the 1. Therefore, the probability for the selected path,

Pπ[sd], increases slowly. The probabilities for the other paths decrease accord-
ingly.

Otherwise, if the delay over the selected path is not the minimum, then we
decrease the probability of selecting the same path again, Pπ[sd], and increase
the probability of selecting any other path, Pp[sd]. If the difference of the
delay over the selected path minus the maximum delay over the other paths,
Tπ[sd]− max

p[sd]
Tp[sd], is large, this means that the selected path has not so bad

performance. In this case, the function exp[Tπ[sd]− max
p[sd]

Tp[sd]] approaches the

0. Therefore, the probability for the selected path, Pπ[sd], decreases slowly.
If this difference is small, this means that the selected path has very poor
performance. In this case, the function exp[Tπ[sd]− max

p[sd]
Tp[sd]] approaches the

1. Therefore, the probability for the selected path, Pπ[sd], decreases fast. The
probabilities for the other paths increase accordingly.

This updating process is repeated until the next v +1 virtual call arrives.
At that moment, this new virtual call is routed probabilistically, according
to the current routing probabilities, along a path.

3 SIMULATION

In this section, we compare the performance of the deterministic shortest-
path and the three learning automata algorithms (see previous section) via

12



simulation. In an arbitrary topology network, we consider two specific paths
to be available between a given source-destination pair. We assign a learning
automaton at the source node to route newlly arriving virtual calls through
either the first or the second path. Path # 1 has seven links each one with
effective service rate 1. Path # 2 has seven links with effective service rates
1, 0.5, 2, 2, 2, 0.5 and 1. Once a path is selected for a new virtual call,
all packets belonging to this virtual call are transmitted through this path.
Upon arrival, each packet is sent through the selected path for the virtual call
it belongs to. Then the packet is transmitted link-by-link to the destination.

We consider Poisson distributed virtual call arrivals, Poisson distributed
packet arrivals in a virtual call and geometrically distributed number of pack-
ets in a virtual call. Then the virtual call duration (lifetime) is exponentially
distributed. Finally, the packet service requirement is exponentially dis-
tributed with mean 1/µ = 1. For the traffic characteristics, we consider two
cases:

i) 30/2/40: the mean interarrival time of virtual calls is 1/γ = 30, the
interarrival time of packets in a virtual call is 1/r = 2 and the mean virtual
call duration is 1/δ = 40.

ii) 50/5/200: the mean interarrival time of virtual calls is 1/γ = 50, the
interarrival time of packets in a virtual call is 1/r = 5 and the mean virtual
call duration is 1/δ = 200.

For measuring the path delay and updating the probabilities, we consider
two cases:

i) 1 : at every packet departure from the network through a path, the
destination sends to the source the delay of this last packet through this
path.

ii) 50 : at every 50th packet departure from the network through a path,
the destination sends to the source the average packet delay of these 50 last
packets through this path.

The source node keeps and updates the information about the delay of
its paths to the destination. The information about the delay of a path is
updated every time a packet arrives at the destination through this path.
However, this updating is not done immediately, but we assume that this
information becomes available to the source node after a feedback delay.
We assume that no extra traffic is created for transferring this feedback
information to the source node (it is either piggybacked on regular packets
or uses a different channel). We consider two cases for the feedback delay:

13



30/2/40 1 instant 1 obsolete 50 instant 50 obsolete

deterministic 50.59 ±0.89 63.59 ±1.28 55.38 ±0.93 61.97 ±1.36
L automaton 50.27 ±1.15 61.29 ±1.36 57.37 ±0.88 61.44 ±1.25
MRL automaton 50.64 ±0.73 61.27 ±1.63 61.15 ±0.92 64.04 ±1.36
SDL automaton 48.92 ±0.51 62.52 ±1.04 57.37 ±1.14 60.60 ±1.46

50/5/200 1 instant 1 obsolete 50 instant 50 obsolete

deterministic 46.79 ±1.75 57.84 ±1.92 60.52 ±2.21 68.30 ±2.23
L automaton 45.35 ±1.45 54.85 ±2.31 61.43 ±1.76 65.43 ±1.77
MRL automaton 43.25 ±1.45 56.45 ±2.13 62.05 ±3.16 65.67 ±2.52
SDL automaton 46.22 ±1.36 57.45 ±2.17 60.81 ±1.79 67.24 ±1.68

Table 1: The average packet delay ± error (95% confidence interval) for
deterministic, Linear automaton, Multiple Response automaton and State
Dependent automaton based routing.

i) instantaneous information, when the feedback delay is 7 time units. In
this case, we assume that the feedback information has higher priority over
other packets and does not wait in queues.

ii) obsolete information, when the feedback delay is 60 time units. In
this case, we assume that the feedback information is piggybacked on regular
packets and is transferred back to the source node.

Updating the information of a path asynchronously at packet departure
instances has an undesirable characteristic. If a path becomes unattractive
for routing packets through it, then we may not route any more packets
through it. However, our information about its length remains the same,
although after some time this path may become idle. We have overcome this
problem by sending a probe packet through a path that has not been used
for 100 time units. In this way, we may update our information about its
delay.

In Table 1 and Figures 1-8, we show the simulation results for the average
packet delay for 10,000 virtual calls.

For given learning parameters α = 0.2 and β = 0.8, all four algorithms
perform similarly, although the learning automata algorithms achieve bet-

14



ter performance. Furthermore, the learning automata have more flexibility,
since we can calibrate their learning parameters depending on the particular
network topology and traffic characteristics. By suitably tuning the reward
and penalty parameters, the learning automata give improved performance.

For example, in the case of 30/2/40, the L automaton with α = 0 and
β = 0.6 achieves an average packet delay of 45.03 (when 1 instant), 52.42
(when 1 obsolete), 54.40 (when 50 instant), 57.99 (when 50 obsolete). These
delays are much smaller than those in Table 1.

In the case of 50/5/200, the MRL automaton with [α1 = 0.8, α2 = 1, β2 =
1, β1 = 1] achieves an average packet delay of 57.14 (when 50 instant) and
with [α1 = 0.8, α2 = 0.2, β2 = 1, β1 = 1] achieves an average packet delay of
64.43 (when 50 obsolete). Again, these delays are much smaller than those
in Table 1.

Another important result is that the more frequent we update the algo-
rithms and the more recent network state information we have, the better
the performance. Thus, the best performance is achieved when the router
knows the delay experienced by every packet as it traverses a particular path,
as soon as possible.

4 VIRTUAL LINK LENGTH

In this section, we develop the virtual link length, a new measure for the
link length in virtual circuit networks. We use it in the learning automata
routing algorithm to route newly arriving virtual calls. Then, we show via
simulation its superiority over the minimum packet delay or shortest-queue
routing.

Let a link ij with service rate Cij. We propose as link length lij(n) at
time n a convex combination of its current length lcurrent

ij (n) and its expected

length in the future lfuture
ij (n). In this way, we base our decisions not only on

the current network state, but also on the estimated future network state.
We call it virtual link length and define it as [8]:

lij = ε ∗ lcurrent
ij (n) + (1 − ε) ∗ lfuture

ij (n)

We may consider as current length lcurrent
ij (n) =

1 + Nij(n)

µCij

, a linear func-

tion of the number of packets on link ij, Nij. This current link length is the

15



estimated packet delay on this link right now. We may consider as future

length lfuture
ij (n) =

1 + Vij(n)

µCij

, a linear function of the number of virtual calls

on link ij, Vij. This future link length is the estimated packet delay on this
link in the near future.

Then the virtual length of link ij is

lij = ε ∗
1 + Nij(n)

µCij

+ (1 − ε) ∗
1 + Vij(n)

µCij

0 ≤ ε ≤ 1

A related measure to the virtual link length is the unfinished work [10]:

Uij(n) =
1 + Nij(n)

µCij

+
r

δ
∗

1 + Vij(n)

µCij

where the future link length is weighted by r/δ: the average number of
packets in a virtual call. The unifinished work represents the average delay
due to both the current packets waiting to be transmitted and the packets
that are expected to arrive (due to the current open virtual calls) and be
transmitted.

The virtual length of a path π[sd] is lπ[sd](n) =
∑

ij∈π[sd]

lij(n).

The routing decisions are done by a L algorithm with reward parameter
α = 0.2 and penalty parameter β = 0.8. If the selected path has the mini-
mum virtual length at the next iteration, then we increase the probability of
selecting it again, otherwise we decrease it.

Let path π[sd] is selected for the vth virtual call.

Update the probabilities at time instances n until the (v + 1)th virtual call

arrives:

If lπ[sd](n) = min
p[sd]

{lp[sd](n)}, then

Pπ[sd](n + 1) = Pπ[sd](n) + 0.2 ∗ [1 − Pπ[sd](n)]
Pp[sd](n + 1) = Pp[sd](n) − 0.2 ∗ Pp[sd](n) ∀ p[sd] 6= π[sd]

else
Pπ[sd](n + 1) = Pπ[sd](n) − 0.8 ∗ Pπ[sd](n)

Pp[sd](n + 1) = Pp[sd](n) + 0.8 ∗
[

1 − Pp[sd](n)
]

∀ p[sd] 6= π[sd]

16



Select the path for the (v + 1)th virtual call probabilistically according to

Pp[sd](v + 1) ∀p[sd].

Next, we investigate the effect of the parameter ε on the average packet
delay.

We consider the same network as that of the previous section. The mean
packet service requirement is 1/µ = 1. The total packet arrival rate is r ∗
γ/δ = 4/5 (i.e. 4 packets per 5 time units). Two cases that achieve this rate
are the following:

i) 5/50/200: the mean interarrival time of virtual calls is 1/γ = 5, the
mean interarrival time of packets in a virtual call is 1/r = 50 and the mean
virtual call duration is 1/δ = 200.

ii) 50/5/200: the mean interarrival time of virtual calls is 1/γ = 50, the
mean interarrival time of packets in a virtual call is 1/r = 5 and the mean
virtual call duration is 1/δ = 200.

For measuring the path length and updating the path probabilities, we
consider two cases:

i) 1 : the current number of packets at each link is sent to the source at
every packet departure from that link.

ii) 50 : the average number of packets at each link during the last 50 time
units is sent to the source at every 50th packet departure from that link.

The source node keeps and updates the information about the virtual
lengths of its paths to the destination. The information about the virtual
length of a path is updated every time a packet arrives at the destination
through this path. However, this updating is not done immediately, but we
assume that this information becomes available to the source node after a
feedback delay. We assume that no extra traffic is created for transferring
this feedback information to the source node (it is either piggybacked on
regular packets or uses a different channel). We consider two cases for the
feedback delay:

i) instantaneous information, when the feedback delay is 7 time units. In
this case, we assume that the feedback information has higher priority over
other packets and does not wait in queues.

ii) obsolete information, when the feedback delay is 60 time units. In
this case, we assume that the feedback information is piggybacked on regular
packets and is transferred back to the source node.

In Table 2 and Figure 9, 10, we show the simulation results for the average

17



5/50/200 1 instant 1 obsolete 50 instant 50 obsolete

ε = 0.2 104.22 ±4.50 102.20 ±5.51 133.30 ±5.98 129.71 ±4.92
ε = 0.4 59.61 ±3.31 59.97 ±3.06 78.49 ±2.75 73.94 ±2.38
ε = 0.6 46.98 ±2.43 46.12 ±1.79 60.88 ±1.67 56.81 ±1.53
ε = 0.8 39.77 ±1.05 42.68 ±1.25 64.12 ±2.05 77.94 ±3.33
ε = 1 37.19 ±1.22 50.66 ±2.06 104.38 ±4.36 126.66 ±4.45
path delay 55.97 ±3.98 97.02 ±8.79 106.41 ±8.03 121.67 ±8.15

50/5/200 1 instant 1 obsolete 50 instant 50 obsolete

ε = 0 73.01 ±3.89 69.24 ±5.15 125.73 ±13.88 100.86 ±7.56
ε = 0.2 36.70 ±0.98 37.20 ±0.83 51.43 ±1.66 51.50 ±1.77
ε = 0.4 34.39 ±1.05 37.23 ±1.42 64.44 ±1.69 68.90 ±1.71
ε = 0.6 34.85 ±1.05 39.41 ±1.10 76.96 ±1.50 85.60 ±1.10
ε = 0.8 35.29 ±0.88 41.59 ±1.11 83.39 ±1.19 92.28 ±2.13
ε = 1 37.02 ±1.02 44.15 ±0.99 86.26 ±2.34 97.26 ±3.46
path delay 45.35 ±1.45 54.85 ±2.31 61.43 ±1.76 65.43 ±1.77

Table 2: The average packet delay ± error (95% confidence interval) for
different values of the parameter ε, when we use as path length the sum

of the virtual link lengths lij = ε ∗
1 + Nij

µCij

+ (1 − ε) ∗
1 + Vij

µCij

, or the path

delay.

packet delay for 10,000 virtual calls.
An important observation made in the previous section is also repeated

here: the more frequent we update the learning automaton algorithm and the
more recent network state information we have, the better the performance.

We also notice that a proper value for the parameter ε should be exper-
imentally selected for best performance. Using only the number of virtual
calls on each link (ε = 0) as the link length is very inefficient (actually, for
the case 5/50/200, the average network delay becomes extremely high and
we do not even show it). Also, it is not always best to use only the number
of packets on each link (ε = 1) as the link length.

For comparison, we also show the average network delay, when we use

18



the packet delay on a path as the path length. We remark that using both
the number of packets and virtual calls is much better than using the packet
delay on the path.

In case, we update the learning automaton infrequently and have obsolete
state information, then it seems better to weight more (ex. ε < 1/2) the
number of virtual calls, Vij, than the number of packets, Nij, in the virtual

link length. Then, the routing decisions depend more on lfuture
ij than on

lcurrent
ij .

When the interarrival time of virtual calls is very short 1/γ = 5, virtual
calls arrive very frequently into the network. On the average, there are γ/δ =
40 virtual calls, each one carries r/δ = 4 packets, so there are 160 packets
into the network. Thus, it is important to weight properly the dependency
of the routing algorithm onto the number of packets and virtual calls. Table
2 shows that the routing decisions should be based more on the number of
packets on each link than on the number of virtual calls on each link. If at
every packet departure, we know the current network state instantaneously,
then it is better to base the routing decisions only (100%) on the current
number of packets. If at every packet departure, we know the network state
after a feedback delay, then it is better to base the routing decisions at 80% on
the number of packets and at 20% on the number of virtual calls. If at every
50th packet departure, we know the network state either instantaneously or
after a feedback delay, then it is better to base the routing decisions at 60%
on the number of packets and at 40% on the number of virtual calls.

However, if we increase the interarrival time of virtual calls at 1/γ =
50, the number of virtual calls plays a more important role in the routing
decisions. In this case, on the average, there are γ/δ = 4 virtual calls, each
one carries r/δ = 40 packets, so there are 160 packets into the network.
Here, we have fewer virtual calls, but the impact of each one on the network
performance is greater than in the previous case. Thus, we weight the number
of virtual calls more than previously. This is shown in Table 2. If at every
packet departure, we know the current network state instantaneously, then it
is better to base the routing decisions at 40% on the number of packets and
at 60% on the number of virtual calls. If at every packet departure, we know
the network state after a feedback delay, then it is better to base the routing
decisions at 20% on the number of packets and at 80% on the number of
virtual calls. If at every 50th packet departure, we know the network state

19



either instantaneously or after a feedback delay, then it is better to base the
routing decisions at 20% on the number of packets and at 80% on the number
of virtual calls.

Note also, that although the traffic characteristics 5/50/200 and 50/5/200
give the same packet arrival rate, the overall average packet delay is different.
It is obvious, that using only the number of virtual calls or only the number
of packets as a measure for the traffic in connection-oriented networks (as it
is done in real networks [2, 3, 12, 13, 16, 17, 19, 25, 30]) is inefficient. The
proposed virtual link length incorporates both the number of packets and the
number of virtual calls on the link and provides much better performance.

5 CONCLUSIONS

In this paper, we use learning automata at the source nodes of a connection-
oriented network to dynamically route newly arriving virtual calls to their
destination. First, we introduce the MRL and the SDL learning automata.
We use these two new learning automata, as well as the well-known L learning
automaton and the deterministic shortest-path algorithms in a simulation
program to route virtual calls. We find that the more frequent the updating
and the more recent information used, the better the performance.

Then, we develop a new measure for the load on a link, called the virtual
link length, which is a function of both the number of packets and the number
of virtual calls at this link. Instead of using the packet delay as a link
length, we propose the use of the virtual link length in the learning automata
routing. We show via simulation that this virtual link length is superior to
the minimum packet delay or shortest-queue-type link length, usually used
in real networks [2, 3, 12, 13, 16, 17, 19, 25, 30]. Using the virtual link length
in the routing decisions results in smaller average packet delay than using
only the number of packets, or only the number of virtual calls, or the packet
delay. Consequently, incorporating both the packet and the virtual call traffic
characteristics into the routing decisions is important for improved network
performance.

Furthermore, when the routing algorithm is updated infrequently based
on obsolete network state information, then the information about the num-
ber of virtual calls is more reliable than the information about the number
of packets at the link. Therefore, in this case, the virtual link length should

20



be based more on the number of virtual calls than on the number of packets
at this link. Finally, when there are few virtual calls and each one carries a
large number of packets, the impact of a new virtual call on the performance
of the links that it will use is large. Again, in this case, the virtual link length
should be based more on the number of virtual calls than on the number of
packets at this link. On the other hand, when there are many virtual calls
and each one carries a small number of packets, the impact of a new virtual
call on the performance is small. In this case, the virtual link length should
be based more on the number of packets than on the number of virtual calls
at this link.

References

[1] B. Akselrod and G. Langholz. A simulation study of advanced routing
methods in a multipriority telephone network. IEEE Trans. on Systems,

Man, and Cybernetics, Vol. SMC-15, No. 6, pp.730-736, Nov./Dec.
1985.

[2] F. Amer and Y.-N. Lien. A survey of hierarchical routing algorithms
and a new hierarchical hybrid adaptive routing algorithm for large scale
computer communication networks. Proc. IEEE ICC ’88, pp. 999-1003,
1988.

[3] P. Brown, J. Roumilhac, and P. Bonnard. A study of the TRANSPAC
routing algorithm. Teletraffic Science for New Cost-Effective Systems,

Networks and Services, ITC-12, M. Bonatti (editor), pp. 1033-1039, El-
sevier Science Publ. 1989.

[4] P. Chemouil, M. Lebourges, and P. Gauthier. Performance evaluation of
adaptive traffic routing in a metropolitan network: a case study. Proc.

IEEE Globecom ’89, pp. 314- 318, 1989.

[5] M.S. Chrystall and P. Mars. Adaptive routing in computer communica-
tion networks using learning automata. Proc. of IEEE Nat. Telecomm.

Conf., pp. A3.2.1-7, 1981.

21



[6] A. A. Economides, P. A. Ioannou, and J. A. Silvester. Dynamic routing
and admission control for virtual circuit networks. Journal of Network

and Systems Management, Vol 2, No 2, 1995.

[7] A. A. Economides, P. A. Ioannou, and J. A. Silvester. Adaptive virtual
circuit routing. Computer Networks and ISDN Systems, Vol. 27, 1995.

[8] A.A. Economides. A unified game-theoretic methodology for the joint
load sharing, routing and congestion control problem. Ph.D. Disserta-

tion, University of Southern California, Los Angeles, August 1990.

[9] A.A. Economides. Multiple response learning automata. IEEE Trans-

actions on Systems, Man, and Cybernetics, Vol. 26, No. 1, pp. 153-156,
1996.

[10] A.A. Economides, P.A. Ioannou, and J.A. Silvester. Decentralized adap-
tive routing for virtual circuit networks using stochastic learning au-
tomata. Proc. of IEEE Infocom 88 Conference, pp. 613-622, IEEE 1988.

[11] A.A. Economides and J.A. Silvester. Optimal routing in a network with
unreliable links. Proc. of IEEE Computer Networking Symposium, pp.
288-297, IEEE 1988.

[12] M. Epelman and A. Gersht. Analytical modeling of GTE TELENET
dynamic routing. Teletraffic Issues in an Advanced Information Society

ITC-11, M. Akiyama (editor), Elsevier Science Publ. 1985.

[13] M. Gerla. Controlling routes, traffic rates, and buffer allocation in packet
networks. IEEE Communications Magazine, Vol. 22, No. 11, pp. 11-23,
Nov. 1984.

[14] R.M. Glorioso, G.R. Grueneich, and J.C. Dunn. Self organization and
adaptive routing for communication networks. EASCON ’69 Record,
pp.243-250, 1969.

[15] R.M. Glorioso, G.R. Grueneich, and D. McElroy. Adaptive routing in a
large communication network. Proc. 9th Symposium on Adaptive Pro-

cesses, pp. XV.5.1-XV.5.4, 1970.

22



[16] W.-N. Hsieh and I. Gitman. Routing strategies in computer networks.
IEEE Computer, pp. 46-56, June 1984.

[17] A. Khanna and J. Zinky. The revised ARPANET routing metric. Proc.

Communication Architectures and Protocols, pp. 45-56, ACM 1989.

[18] L.G. Mason. Equilibrium flows, routing patterns and algorithms for
store-and-forward networks. Large Scale Systems, Vol. 8, pp. 187-209,
1985.

[19] J. Moy. OSPF: Next generation routing comes to TCP/IP networks.
LAN Technology, pp. 71-79, April 1990.

[20] K. Narendra and M.A.L. Thathacher. Learning Automata: An Intro-

duction. Prentice Hall, 1989.

[21] K.S. Narendra and P. Mars. The use of learning algorithms in telephone
traffic routing - a methodology. Automatica, Vol. 19, No. 5, pp. 495-502,
1983.

[22] K.S. Narendra and M.A.L. Thathachar. On the behavior of a learning
automaton in a changing environment with application to telephone
traffic routing. IEEE Trans. on Systems, Man and Cybernetics, Vol.
SMC-10, No. 5, May 1980.

[23] K.S. Narendra and M.A.L. Thathachar. Learning automata : A survey.
IEEE Trans. on Systems, Man, and Cybernetics, Vol. SMC-4, No. 4, pp.
323-334, July 1974.

[24] K.S. Narendra, E.A. Wright, and L.G. Mason. Application of learn-
ing automata to telephone traffic routing and control. IEEE Trans. on

Systems, Man, and Cybernetics, Vol. SMC-7, No.11, pp. 785-792, Nov.
1977.

[25] Th. Narten. Internet routing. Proc. Communication Architectures and

Protocols, pp. 271-282, ACM 1989.

[26] O.V.Jr. Nedzelnitsky and K.S. Narendra. Nonstationary models of learn-
ing automata routing in data communication networks. IEEE Tr. on

Systems, Man and Cybernetics, Vol. SMC-17, No. 6, pp. 1004-1015,
Nov./Dec. 1987.

23



[27] P.R. Srikantakumar. Adaptive routing in large communication networks:
Probabilistic study. Proc. IEEE Conf. on Decision and Control, pp. 398-
401, 1981.

[28] P.R. Srikantakumar and K.S. Narendra. A learning model for routing
in telephone networks. SIAM J. Control and Optimization, vol-20, no
1, Jan. 1982.

[29] J.R. Zgierski and B.J. Oommen. SEAT: an object-oriented simulation
environment using learning automata for telephone traffic routing. IEEE

Transactions on Systems, Man, and Cybernetics, Vol. SMC-24, No. 2,
pp. 349-356, February 1994.

[30] J. Zinky, G. Vichniac, and A. Khanna. Performance of the revised
routing metric in the ARPANET and MILNET. Proc. MILCOM, pp.
219-224, IEEE 1989.

24



Anastasios A. Economides was born and grew up in Thessaloniki, Greece.
He received the Diploma degree in Electrical Engineering from Aristotle Uni-
versity of Thessaloniki, in 1984. After receiving a Fulbright and a Greek
State Fellowship, he continued for graduate studies at the United States. He
received a M.Sc. and a Ph.D. degree in Computer Engineering from the Uni-
versity of Southern California, Los Angeles, in 1987 and 1990, respectively.
During his graduate studies, he was a research assistant performing research
on routing and congestion control. He is currently an Assistant Professor
of Informatics at the University of Macedonia, Thessaloniki. His research
interests are in the area of Performance Modeling, Optimization and Control
of High-Speed Networks. He is a member of IEEE, ACM, INFORMS, EPY,
TEE.

25




