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Abstract

The problem of routing virtual circuits accord-
ing to dynamic probabilities in virtual circuit pack-
et switched networks is considered. Queueing net-
work models are introduced and performance mea-
sures are defined. A decentralized asynchronous
adaptive routing methodology, based on learning
automata theory is presented. Every node in the
network has a stochastic learning automaton as
a router for every destination node. The rout-
ing probabilities that are assigned to the network
paths are updated asynchronously on the basis of
current network conditions. A new learning al-
gorithm suitable for routing is used. Some ini-
tial simulation experiments, for a simple network,
show convergence to optimal routing.

I. INTRODUCTION

The emergence of Integrated Services Digital Networks
(ISDN) where the transmitted information is data, voice
and images, as well as the need for interactive communi-
cation among users has lead to packet switched networks.

In packet switched networks, information is stored and
transmitted from node to node in small groups of bits
called packets. In other words, a message (data, voice
or image) is decomposed into several packets, each with
its own control and identification information, which are
transmitted independently.

Packet switched networks can be operated using two
main switching techniques - datagram and virtual circuit.
In datagram networks, each packet is treated as a separate
entity and may be routed differently from other packets
belonging to the same message. Although this provides a
very flexible way of information transfer, it is best suited
for data, since packets may arrive out of order incurring
resequencing delays, which cause problems in voice trans-
mission. In virtual circuit networks, a call set-up packet,
which may be part of the first packet of a message, initi-
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ates the establishment of a virtual circuit path from source
to destination (Fig.1). All other packets belonging to this
message follow the same route which rémains fixed for the
duration of the call. In this way, a virtual circuit provides
a reliable logical channel with packets delivered in order.

Whether routing individual packets in datagram net-
works or the virtual circuits in virtual circuit networks,
good route selection is very important for efficient com-
munication and better network resource utilization. So
it is not surprising that the routing problem in packet
switched networks has received considerable attention, for
example [1, 4, 7).

Routing can be classified according to how dynamic
the route selection process is : 1) static, 2) quasi-static,
and 3) adaptive or dynamic. In static routing, the route
selection is independent of the current network conditions.
Static routing algorithms can be : a) fixed, when there is
a predetermined set of alternate paths between the source
and the destination and all traffic arriving during the same
time period follows the same route; b) random, where the
traffic is split to several routes according to fixed prob-
abilities. In quasi-static routing, route selection depends
partially on the current network conditions but some net-
work parameters are assumed to be stationary over time.
In adaptive routing, route selection depends on the current
network conditions (topology changes, traffic conditions).
Since in reality, network conditions change over time the
decisions in adaptive routing can be better and more ac-
curate.

The most accurate representation of a real network is
to consider a completely dynamic network environment
where the conditions continually change over time. Anal-
ysis of adaptive routing algorithms has been attempted by
several researchers, eg. [1]. The common problem is that
the routing probabilities of selecting a specific route and
hence the transition probabilities in a Markov model de-
pend on the network state. The resulting Markov Chain
does not have a product form solution and we are forced
to use simulation or approximations.
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Even in the simplest case of datagram packet switched
networks, where packets are individually routed, approxi-
mations are needed. In order to deal with the difficulties
of the system dynamics, many restrictive assumptions are
used, such as: i) the “Quasi-Static” assumption [1]- that
the external arrival traffic is stationary over time -, ii)
the “Fast Settling Time” assumption - that after a new
decision is made, the flows of traffic settle down to their
new values instantaneously. Optimization techniques and
flow approximations [1, 4 - 9, 14] are common approaches.
The traffic follows the shortest path with respect to link
lengths that depend on the flows carried by the links [1].

Ephremides, Varaiya and Walrand [4] considered a sin-
gle node, with one incoming and two similar outgoing
links. They proved that for exponential packet lengths:
i) where the number of packets in each outgoing link is
known, then the “send to shortest queue” policy is op-
timal and ii) where the initial queue lengths are known
and equal and no further observations are made, then the
“round-robin” policy is optimal.

Using flow dependent routing decisions, Gallager {7]
shows that optimal routing is achieved by balancing the
incremental (or marginal) delays on the routing paths.

The adaptive routing problem in virtual circuit packet
switched networks is even more difficult. The difficulties
arise because the routing decisions are made at virtual cir-
cuit arrival instants. Subsequently, no control is exercised
over the packet routing process, i.e. the network state
is affected for longer periods than in datagram networks.
The system dynamics occur at two different time scales.
The fundamental point is that although the control is ex-
erted at the slower time scale, where the virtual circuit
establishment / termination process occurs, the network
performance is measured at the faster time scale, where
the packet transport process occurs. Previous work on
this problem [5, 6, 8, 14] assumes either independence of
the virtual circuit establishment / termination process and
packet transport process or limiting process rates.

For a comprehensive analysis and more precise con-
trol of the network, both the packet and virtual circuit
levels should be considered. The fundamental question is
how to appropriatelly characterize the network state such
that optimal routing decisions can be made. In this paper,
the available information about the network condition can
be the current number of packets, the current number of
virtual circuits or the current routing probabilities. Per-
formance measures such as the unfinished work on a path,
increase in the number of packets on a path due to the ad-
dition of a new virtual circuit on this path, and increase
in the average packet delay on a path due to the addi-
tion of a new virtual circuit on this path are proposed and
considered as path costs.

An interesting approach to the routing problem, is the
use of learning automata [2, 10 - 13]. In these learning
control algorithms, telephone call blocking [11, 13] and

packet delay [2, 10, 12] are used to characterize the net-
work state. Although slow, these adaptive algorithms are
suitable for the control of very complex and random envi-
ronments, such as a communication network.

In this paper we apply the stochastic learning automa-
ton methodology to the routing problem in virtual circuit
networks (Fig.3). A virtual call originating at a source
node has to be routed through a path among many alter-
nate paths to a destination node. At each intermediate
node, a router probabilistically selects the best possible
path to this destination node (Fig.2). The greatest poten-
tial of the learning automata methodology is that it per-
mits the analysis of very complex dynamic systems, and
global optimization is possible. Even when little informa-
tion is available, they tend to stabilize a nonstationary
system by predicting its behavior. A routing probability
updating scheme is proposed that adapts itself to the net-
work conditions so that, in steady state, the costs on the
paths are equalized.

The paper is organized as follows : In section II, we
introduce the Network Model. In section ITI, we propose
a new stochastic learning automaton algorithm and ap-
ply it to the routing problem. In section IV, we describe
simulation results that show the behavior of the proposed
algorithm. In section V, we make improvements to the
routing probabilities updating scheme and we define other
performance measures that can be used by the virtual cir-
cuit routing algorithm to minimize the number of packets
in the network or the overall network average packet de-
lay. Finally, in section VI, we draw some conclusions on
the approach and discuss extensions to the global opti-
mization problem in decentralized adaptive virtual circuit
routing algorithms.

II. NETWORK MODEL

The network is modeled as a directed graph G=(V,E),
where V is the set of nodes and E is the set of directed links
(Fig.1). At every network node %, a router Riraj (or Riyq
if the virtual circuits are distinguished with regard to their
source node s), selects the best possible path among II,,
alternate paths to the destination node d (Fig.4). The
following assumptions are made for the performance eval-
uation of the virtual circuit packet switched network :

1. The packet interarrival times per virtual circuit are
exponentially independent identically distributed (iid)
with mean 1/r.

2. The packet service times at link.ij are iid exponen-
tially distributed with mean 1/p;; .

3. The virtual circuit interarrival times generated at
node s with destination node d are iid exponen-
tially distributed with mean 1/%(sq)- The virtual
circuit interrarival times entering the network are
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iid exponentially distributed with mean 1/7,, where
Yo = E: Ed7[:d]'

4. The virtual circuit interarrival times either gener-
ated at node k or passing through node k with desti-
nation node d, are iid exponentially distributed with

mean 1/jq).

5. The virtual circuit durations are iid exponentially
distributed with mean 1/6.

6. There is enough buffering in every link to accomo-
date all packets.

7. All virtual circuits in a link can be served simulta-
neously.

8 The order in which packets and virtual circuits are
served does not depend on their processing times
‘and there are no priorities.

9. The virtual circuit set up time is negligible, since the
first data packet is a path finder.

10. The processing delays within nodes are ignored.

Few analytical approaches to the routing problem in
virtual circuit packet switched networks exist, [1, 5, 6,
8, 14], due to the complexity of the interaction between
the virtual circuit and packet processes. For a complete
analysis of the network, we must incorporate packet and
virtual circuit metrics into the model simultaneously.

Consider a network node k that routes traffic to a des-
tination node d and the embedded process at the arrival
instants of virtual circuits to node k with the following
definitions:

ng ¢ time instant of the arrival of the nt* virtual circuit
at node k, (either generated at node k or passing
through node k). From now on, we drop the sub-
script k and write n for ny.

V,(n) : total number of active virtual circuits in the net-
work at time n.

V;i;(n) : number of virtual circuits using link.ij, at time n.
N;j(n) : number of packets present in the queue (includ-

ing those being transmitted, if any) on link.ij, at
time n.

Aij(n) + packet arrival rate at link.ij at time n.

¢ij(n) : packet arrival rate at link.ij over total packet ar-
rival rate entering the network at time n.

T;;(n) : packet delay at link.ij at time n.

U;j(n) ¢+ unfinished work on link.ij at time n.

AxN;j(n) : increase of the number of packets on link.ij,
due to the addition of a new virtual circuit on path.w
at time n.

Ax(gij(n) * Tij(n)) : increase of the portion of the overall
network packet delay corresponding to link.ij, due
to the addition of a new virtual circuit on path.r at
time n.

Pr(ka)(n) : probability of routing an arriving virtual cir-
cuit at node k and destined for node d through path.
w(kd) at time n.

III. A STOCHASTIC LEARNING
AUTOMATON AS A ROUTER

Since the network conditions change over time, route
selection should track the changing conditions. Adaptive
control algorithms that adjust the route selection to the
current network conditions are needed. Therefore, we con-
sider learning automata as routers, since they can operate
in an asynchronous and decentralized mode.

The proposed adaptive routing algorithms are based
on a “Probabilistic Selection of the Minimum Cost Path”
idea. Instead of using a definitive decision as to where
to send a newly arriving virtual circuit, we vary the path
routing probabilities favoring the minimum cost path. In
a rapidly changing system, even if we have some inforina-
tion about the system state at a time instant, this does not
ensure that the same will hold for the next time instant.
Also, since the information about the network condition
needs some time to be transferred through the network, it
may be obsolete when it is used by the router. A learn-
ing algorithm tends to the optimum path selection using
past experience and attempts to predict future system be-
haviour.

The automaton selects action a(n) = a; with proba-
bility P;(n) at each instant n. Action a(n) becomes input
to the environment (Fig. 3). If this. results in a favor-
able outcome for the network performance (X(n) — 0),
then the probability Pi(n) is increased by APi(n + 1) =
P;(n + 1) — Py(n) and the Pj(n),j # i, are decreased by
APj(n + 1) = Pj(n + 1) — Pj(n). Otherwise, if an unfa-
vorable outcome (X(n) — 1) appears, then the P;(n) is
decreased by AP;(n+ 1) = Py(n+ 1) — Py(n) and and the
P;(n),j # i are increased by APj(n+ 1) = Pj(n + 1) -
P;(n).

Since communication networks are nonstationary en-
vironments, their state varies with time, but little work
has been done on learning automata in nonstationary en-
vironments. Narendra and Thathachar [11], as well as
Srikantakumar and Narendra [13] consider that the condi-
tional probability of an unfavorable outcome when select-
ing a specific action is affected by the action probabilities.
They show that either the telephone call blocking prob-
abilities or the rates of the call blocking probabilities on
the network links can be equalized in steady state.
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Every network node k has a router for every destina-
tion node d that routes new arriving virtual circuits at
node k (either genetated or passing through it) and des-
tined for node d. These routers operate asynchronously
and base their decision on the current network condition.
The actions, a(n) of this router R4 are to select some
particular path.x (kd).

We define the cost for path.x(kd) at time n to be the
unfinished work on path.x(kd) :

Crra)(n) = Uw(kd)(n)zv Z:(k )Uij(")
ijEn(kd
- Nij(n) + (r/8) * Vij(n) (1)
Vijen(kd) Hai

where 7(kd) = 1(kd), ..., Hq(kd).

Note that the number of packets per virtual circuit is
geometrically distributed (memoryless), with mean =/4.

We propose the following adaptive algorithm at every
network node k, for routing virtual circuits to a certain
destination node d.

Probabilistic Selection of the Minimum Cost
Path :

Suppose path.p was selected at time n-1, with Py(n—1).
Collect available traffic statistics.
Compute Cx(n) Vx,m is a path from k to d.

Set Cppae(n) = mgx{C,..(n)}.

Cx(n)
Car(n) ) Vr.

Set X (n) = Xp(n).

Set Xo(n) =

Update the routing probabilities Px(n) Vx, (see below).

Select the path for the nt* virtual circuit probabilisti-
cally according to Px(n).

Next, the routing probabilities updating scheme is de-
scribed. At first, the selected path cost is compared to
the cost of the other paths. If the selected path.p has the
minimum cost (favorable outcome) among all alternative
paths, then its routing probability increases by AP,(n)
and the routing probabilities of the other paths are de-
creased. Otherwise (unfavorable outcome), its routing
probability is decreased by AP,(n) and the routing proba-
bilities of the other paths are increased. More specifically:

case 1: The selected path.p has the smallest cost
Then its routing probability increases in proportion to
how small its cost was, i.e. if its cost was small, then its

routing probability increase should be large. The rout-
ing probability should also depend on how small its pre-
vious routing probability was, i.e. if its previous routing
probability was small, then its routing probability increase
should be large. Therefore, we use APy(n) = a* [l —
X(n)]*[1-Pp(n)] 0<a<l.

Since we increase the routing probablity of the selected
path, we decrease the routing probabilities of all other
paths.

case 2: The selected path.p does not have the smallest
cost

Then its routing probability decreases in proportion to
how large its cost was, i.e. if its cost was large, then its
routing probability decrease should be large. The rout-
ing probability should also depend on how large its pre-
vious routing probability was, i.e. if its previos routing
probability was large, then its routing probability decrease
should be large. Therefore, we use AP,(n) = —f8 * X (n)*
Py(n) 0<p<1.

Since we increase the routing probablity of the selected
path, we should decrease the routing probabilities of all
other paths.

Implementation of these concepts gives the following
algorithm.

Stochastic Learning Automaton Updating Scheme
If Xp(n) = m}n{X,(n)}, then

Pp(n) =Pp(n— 1)+ a*[1— X(n)] *[1 — Py(n—1)]

Pr(n) =Pr(n—1)—ax[l — X(n)] * Pe(n—
vgt;p (n—1)—a*[l - X(n)] * Pe(n~ 1)

else

Py(n) = Py(n —1) = B+ X(n) « Py(n — 1)

1

Py(n) = Pr(n— 1)+ﬂ*X(n)*[II_ 7

Vr#p

— Po(n—1)]

where 0<a,B8<1.

IV. SIMULATION RESULTS

In a simulation experiment we considered a single sour-
ce node with two similar alternate paths to the same desti-
nation node (Fig. 2). Taking the unfinished work on each
path as the response of the network, we applied the pro-
posed adaptive routing algorithm for 10,000 virtual circuit
arrivals. Qur first aim was to investigate the behavior of
learning automata algorithms and the effect of different
values of a and § on the routing.

For initial routing probabilities P;(0) = P,(0) = 0.5;
mean virtual circuit interarrival time 1/v = 1,000 msecs;
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mean packet interarrival time in the virtual circuits 1/r=
200 msecs; service time of packets 1/p = 50 msecs; and
mean virtual circuit duration 1/§ = 4,000 msecs; we no-
ticed that large values of a@ and B, may be preferable
(Fig.5, Fig.6, Fig.7, Fig.8, Fig.9, Fig.10, Fig.11). This
happens because increasing the values of a and g, in-
creases the adaptation speed to the network conditions,
at the expense of the adaptation variance (although the
simulation results show little fluctuation).

The mean packet delay is minimized for large values
of a and 3, and converges to a stable value of 750msecs
(Fig.5). Large values of a and @ exhibit more rapid con-
vergence, without affecting the convergence variance too
much.

The expected unfinished work on the two paths tend
to be equal for all values of a and 3, although large values
of a and B work better (Fig.6, Fig.7). Also the absolute
difference of the expected unfinished work (Fig.8, Fig.9),
of the number of packets (Fig.10), and of the number of
virtual circuits (Fig.11) on the two paths tend to zero for
all values of a and 3, although large values of « and 3 are
better.

A routing algorithm may theoretically converge to op-
timality, but it is crucial how fast and how much instabil-
ity is introduced. In the simulation results, we see that we
can control the adaptation speed of the learning algorithm
without introducing instability.

V. IMPROVEMENTS, EXTENSIONS AND
GENERALIZATIONS

The optimal routing problem is a hard problem, since
the decisions should adjust fast to track rapidly time vary-
ing traffic patterns, but simultaneously maintain stability.
Next, we consider some improvements on the stochastic
learning automaton updating scheme and on the perfor-
mance measures used.

V.1 STOCHASTIC LEARNING AUTOMATON
UPDATING SCHEME

1. Since in adaptive routing algorithms, there is a need
to “react to large changes quickly and to small changes
slowly”, we can use different rates of adaptation for dif-
ferent network conditions. If the network cost is far away
from the minimum, the algorithm should converge faster,
while if the network cost is near to the minimum possible
the algorithm should have smaller fluctuation.

This requirement can be incorporated into the reinfor-
cment scheme by employing different parameters for dif-
ferent network responses (X(n)). We split the response
possibilities into several regions, see below. Whenever the
cost of the selected path is very small compared to the
other paths (region 1), then its routing probability should
increase very fast (¢ — 1). When the cost of the se-
lected path is the smallest but is close to the other paths
(region A), then its routing probability should increase

slowly (@ — 0). Correspondingly, whenever the cost of
the selected path is very bad (region A+B), then its rout-
ing probability should decrease very fast (8 — 1). When
the cost of the selected path is slightly greater than the
smallest (region A+1), then its routing probability should
decrease slowly (8 — 0).

Region.1 Xp(n) < ?g{x,(n)} — 1
Region.2 min{X,(n)} — ¢1 < Xp(n) < min{X(n)}—
x£p T£p
— &3
Region.A min{X,(n)} — ¢4-1 < Xp(n) < min{X,(n)}
x#p xEP
Region.A+1 x::;\{X,(n)} < Xp(n) < !’Pig{X,(n)} +6p_1
Region.A+2 min{X,(n)}+6p_1 < Xp(n) < min{X,(n)}+
Ep ©#£p

+0p_2

Region.A+B m;n{X,(n)} +6; < Xp(n) < m;n{X,,(n)}
xED x£p

where 1>h>¢2>...>¢4>0,

1>6, >0, >..>6g > 0,are constants.

A possible sequence for these numbers {¢;} and {6;}
could be a Fibonacci sequence (normalized to the (0,1)
interval).

Therefore, in each of the above regions, we can use
different a;,i = 1,..., A (favorable outcome), and f;,j =
1,..., B, (unfavorable outcome), with1 > a; > a3 > ... >
ag>0,and1> By > 82> ...> 0 >0.

2. In the simulation experiment, collection of the avail-
able statistics and update of the routing probabilities were
done only at virtual circuit arrival instants. But this does
not permit fast adaptation of the routing decisions to the
network state. An idea for speeding the adaptation rate is
to collect the available statistics at virtual circuit arrival
instants, but update the routing probabilities more often.
These multiple updates will be based on the single mea-
surement at the virtual circuit arrival instants. Note that
the updating scheme is composed of recursive equations.
This leads us to extend the previously proposed updating
sheme by using one network state measurement, but many
(for example /; in region.:) iterations of the scheme in one
actual computing step (updating step from n-1 to n). For
clarity we show the transformation of only one network
response region (the full detail is given in the appendix).
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It X,(n) < min{Xe(w)} -1, then
T£P

Py(n) =Ppn—1)*{1—a1*[1—X(n)]}+
+ay * [1 - X(n)]

Pr(n) =Pr(n—1)*{l—on*[1—X(n)]} Vr#£p

Since the measurementsfor P, ,P, andX do
not change between n — 1 and =, call them P,, P, and X.
By solving these recursive equations, we have the following
equations

Py(h) = Ppx{l—on+[1—X]}"+
-1
o #[1-X]* Y {1-ar+[1 - X}
i=0
P.(l) = P,,*{l-—al*[l—X]}" Vr#p

The updating scheme becomes

If X,(n) < ?gg{X,(n)} — ¢1, then

Byn) = Byln = 1) 1= o0 # [1 = X()}+
o [1-X(m)]* 3 {1~ on *[1 - X(n)]}’

Pr(n) =Pr(n-Ds{l-ar*[1-X()}* Vrs#p

We can use different I;,i = 1,...,A and m;,j = 1,...,B
for different regions, where I; > I > ... > l4 > 0, and
my > me > ... > mp > 0, are positive integers.

3. Another improvement of the adaptation speed, is
to update the routing probabilities more often (eg. at
every packet arrival instant). Then the routing algorithm
will track the network state faster and the decisions will
be better. Of course this will introduce more overhead of
transmitting, selecting, storing and computing the traffic
statistics.

4. Note that we have incorporated the normalized
cost of the selected path X(n) in the routing probabil-
ity updating scheme. Although this concept produces a
fairer routing probability updating scheme, it also slows
the adaptation rate. In order to speed up the rate of con-
vergence of the algorithm, we could simply set X(n) =1
for a good decision and X(n) = 0 for a bad decision, but
this might cause instability.

V.2 AVAILA.\BILITY OF MEASURES

In order to investigate how much of the information
about the network state is important for optimum routing,
we consider three cases regarding the availability of the
traffic measurements.

a) Measurements of the current number of ac-
tive packets and virtual circuits on each path are
possible

In equation 1, we use the actual measurements for
Nij(n) and Vij(n).

b) Measurements of the current number of ac-
tive virtual circuits on each link are possible, but
the number of packets is unknown

Since the number of packets is unknown, we estimate
the average number of packets on link.ij at time n, by
modeling each link.ij at the packet level as an M/M/1
queue, with packet arrival rate A;;(n) = » x V;;(n), and
rx Vij(n) < pij

r x Vi;(n)
#ij — 7% Vij(n)
and the expected unfinished work is

Nij(n) =

s B+ (/)Y )

U«(kd)(n) = ]
Vijen(kd) Hi

¢) No measurements of the traffic are possible

Here we must also estimate the number of virtual cir-
cuits. By modeling each link.ij at the virtual circuit level
as an M/M/oo queue, with virtual circuit arrival rate

mim)=323 ),

Vk Vd Vr(kd),ijen(kd)

u[k,{](n) * P,r(kd)(n)

the average number of virtual circuits on link.ij at time
n is estimated to be
_ vij(n
s(n) = 25

Then the average number of packets on link.ij at time
n is estimated to be

r * v5(n)
8 % pi; — r *xv5(n)
and the expected unfinished work is

Nij(n) =

> Nij(n)+(f(f)*7ij(n) 3)

17§ «(kd)(") =
Vijen(kd) Hij
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V.3 ALTERNATE PERFORMANCE OBJECTIVES

The performance measure used in section IV is user
oriented. For overall network optimal routing, the routing
should try to equalize the derivative of the appropriate
cost measure [1, 7). Next, we consider the following ob-
Jjective functions :

1) Minimize the total number of packets in the
network

min lim N(n) = min lim > Nij(n)
Vij
Thus we define the cost for path.x(kd) at time n to be
the increase in the number of packets on path.x(kd) due
to the addition of a new virtual circuit on path.x(kd) at
time n :
ANga)(n) = D AgNij(n) (4)

Vijen(kd)

2) Minimize the overall network average packet
delay

min lim T(n) = min lim Y @ii(n) x Tij(n)
vij

Thus we define the cost for path.x(kd) at time n to
be the increase in the portion of the overall network aver-
age packet delay corresponding to path.w(kd), due to the
addition of a new virtual circuit on path.w(kd) at time n :

Y. Bx(@i(n)*xTy(n))  (5)

Vijem(kd)

AT‘)r(kd)(n) =

AN and AT can be estimated from measurements or
by analytical models as was done for the unfinished work
in the previous section.

V.4 OTHER EXTENSIONS

In the above analysis, it is straightforward to also in-
clude the propagation and processing delays. Some ap-
proximations that would reduce the control traffic over-
head can also be made :

Approzimation 1: Instead of modeling each link.ij as
a queue, an approximation is to model each path.r(kd)
as an M/M/1 queue at the packet level, with packet ar-
rival rate Ayra)(n) = 7 * Vagra)(n), where Vogay(n), is
the number of virtual circuits using path.w(kd) at time
n, and service rate fin(iq), and as an M/M/oo queue at
the virtual circuit level, with virtual circuit arrival rate

Un(rd)(n) = T Vira)(n) * Pr(ia)(n)-

Approzimation 2 : Instead of considering the traffic on
the paths from node k to destination node d, an approxi-
mation will be to consider only the traffic on the outgoing
links of node k.

Remark : The above analysis permits us to find
P:f; d)(n) V7 at every time n. For medium or heavy traffic,
all the alternative paths from k to d will be used. Optimal
routing is achieved if the first derivative lengths of these
paths is equal. The proposed learning algorithm will learn

these P;f’,:d)(n) by itself.

VI. CONCLUSIONS AND FUTURE
RESEARCH

In this paper, we have presented analytical models of
packet switched networks operating in virtual circuit mode,
and a decentralized asynchronous adaptive routing method-
ology that uses queueing performance measures as the net-
work response to learning automata actions. We have pro-
posed a new learning reinforcement scheme and a class of
flexible adaptive routing algorithms based on a “Proba-
bilistic Selection of the Minimum Cost Path” concept.

The strength of our approach to the routing problem is
that it is very suitable for extremely complex dynamic sys-
tems such as a communication network with many nodes
and unpredictable behavior. The proposed decentralized
asynchronous adaptive routing algorithms are simple and
easy to implement. The routing decision at every node
tends to equalize the costs on the network paths and re-
quires small overhead of cpu-time, network bandwidth and
buffer storage.

Further theoretical and simulation research is needed
regarding the convergence conditions of the proposed rout-
ing algorithm. We are also working on comparing the
proposed measures on this simple network. We are also
interested in evaluating how much of the available infor-
mation about the network state is useful for the proposed
routing methodology.

APPENDIX
Stochastic Learning Automaton Updating Scheme

If Xp(n) < ;ng{X,(n)} — ¢1, then

Py(m) = Pyln— 1) {1 - an {1 - X(m)}"+
tars[1=X(@)]+ ¥ {1 - #[1- X(@)}
i=0

Po(n) =Prn—1)x{l—ay*x[1-X(@)]}* Vr#p

6C.4.7.

0619



It omin (X)) - 61 < Xpl(n) < min{Xa ()}, then
Pyn) = Pyln—1)x{1—as+[1— X(a)}*+
+az* [1— X(n)] *ki:_:{l —az*[1— X(n)}}‘
Py(n) =Pi(n—1)*{l-0az+[1-X(m)]}"* Vr#p
I omin X0} < Xp(n) < min{Xe(n)} +61, then
Py(n) = Pp(n—1)#[1—Byx X(n)]™
Pr(n) =Pe(n—1)%[1-F2xX(n)]™"+
LX) *mg (1= B+ X(n))' Vx # p
If ‘,?# {X(n)} + 61 < Xp(n), then
Py(n) = PBp(n—1)*[1— B+ X(@)]™
Pu(n) = Prln=1)+[1= s X(™+
RLELO P S (- e X Ve # 2
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