
EyeSim: A Mobile Application for Visual-Assisted

Wormhole Attack Detection in IoT-enabled WSNs

Niki Tsitsiroudi

SORCE LTD

The Pavilion, Newbury Business Park,

London Rd, Newbury RG14 2PZ

niki.tsitsiroudi@sorce.co.uk

Panagiotis Sarigiannidis

Dept. of Informatics

and Telecommunications Engineering,

University of Western Macedonia,

Karamanli & Ligeris Street,

50100, Kozani, Greece

psarigiannidis@uowm.gr

Eirini Karapistoli

& Anastasios A. Economides

IPPS in Information Systems

University of Macedonia

Thessaloniki, 54006 Greece

{karapis, economid}@uom.gr

Abstract—Internet of Things (IoT) have emerged as a valuable,
flexible, and interoperable network of devices, objects, items, and
electronics. Fuelled by recent advances in networking, communi-
cations, computation, software, and hardware technologies, IoT
has stepped out of its infancy and is considered as the next
breakthrough technology in transforming the Internet into a fully
integrated Future Internet. Wireless Sensor Networks (WSNs) are
utilized by IoT to collect, exchange, and deliver data remotely
leveraging the potential of IoT in practical applications and
services. However, delivering data remotely might be threatened
by various and serious security attacks. This work focuses on
developing a visual-assisted tool for exposing security threats in
IP-enabled WSNs. The proposed tool, called EyeSim, is a human-
interactive visual-based anomaly detection system that is capable
of monitoring and promptly alerting for the presence of wormhole
links. In addition, it is capable of indicating the malicious nodes
that form the wormhole link. EyeSim may expose adversaries by
conducting cognitive network data analysis based on dynamic
routing information. The efficacy of EyeSim is assessed in terms
of detection accuracy. The simulation results show that EyeSim
has the capabilities to accurately detect multiple wormhole
attacks in real-time.

Index Terms—IoT-enabled Wireless Sensor Networks, worm-
holes, visual-assisted wormhole detection

I. INTRODUCTION

Without doubt, IP-enabled Wireless Sensor Networks

(WSNs) emerge as a promising framework, which brings into

play many interesting features of IoT [1]. A WSN can be

established everywhere due to the requirements that a sensor

has because they are not the same with a wired network. An

example of sensor network implementation is to collect data

for the temperature in a tank with fuel and send them to service

tasks’ execution. A WSN is an improved wired network, but

there are differences between them, such as (i) in a WSN

there is no limit for the number of nodes that comprise the

network, (ii) the topology of a WSN can change due to the

mobility of its nodes or by adding or removing a node from

it, (iii) a sensor node have power, computation and memory

limits, (iv) a sensor node is prone to failure that may happen

from the environment where the network is established. These

differences between a wired and a wireless network affect

the secure data transmission in a WSN. Indeed, the security

threats are a major deterrent in many applications IP-enabled

WSNs are envisaged to support [2]. For example, every WSN

uses a radio channel for the packet transfer, which makes the

network affected to denial-of-service attack. The energy and

processing power limit of a node, deter the use from a public

key cryptography.

There are several ways to represent the security events that

occur inside a network. One of them is visualisation. Visuali-

sation is the process of generating images using data analysis

tools [3]. According to Colin Ware [4], a visual representation

is better than a text “the human visual system is a pattern

seeker of enormous power and subtlety. This is because, the

eye and the visual cortex of the brain form a massively parallel

processor that provides the highest-bandwidth channel into

human cognitive centers.” A picture carries a large amount of

information, different colors, shapes, and sizes for every set

of data, which is represented to the viewer in a single picture.

Indeed, information visualisation has been deployed in

different fields and recently in visualizing network data [5].

Security visualisation is arguably one of the first directions to

take when it comes to understanding, analyzing and finding

suspicious network activity in vast amounts of data. To aid

the network analysts in this task, researchers have proposed

numerous visualisation techniques (i.e., scatter plots, color

maps or some form of a graph, etc.) [6]. In addition, these tools

contain various visualisation capabilities in order to make it

easy to locate incidents of interest and to monitor the network

health. While several visualisation tools have been developed

to simulate WSN security issues, none of them is able to run

on mobile devices. The development of a visualisation system

for WSN security based on mobile technologies is a necessity

due to the fact that this technology is used everywhere.

Accordingly, the main contribution of this paper is the

development of an application that can simulate and visualize

threats and attacks, which occur in an IP-enabled sensor

network. The proposed application, called EyeSim, is a proto-

typical security visualisation system for mobile devices whose

software is Android. EyeSim is capable of monitoring and

promptly alerting for the presence of wormholes indicating

at the same time the malicious nodes that form the worm-

2016 9th IFIP Wireless and Mobile Networking Conference (WMNC)

978-1-4673-8746-0/16/$31.00 ©2016 European Union

hole link. In order to expose adversaries, EyeSim conducts

cognitive network data analysis based on dynamic routing

information coming from network logs.

The remainder of the paper is organized as follows. Sec-

tion II reviews existing security visualisation approaches

aimed at detecting attacks launched against IP-enabled WSNs.

Section III outlines the network assumptions made in this

work. Section IV introduces the EyeSim mobile app and its

architecture. In Section V, the EyeSim system is evaluated

through a simulated attack scenario. Finally, Section VI con-

cludes the paper and discusses future extensions.

II. RELATED WORK

IoT security has received a lot of attention recently [7].

However, the research work that has been published in the

literature is limited. For example, the work [8] is a strong

indication that the area of security visualisation for IP-enabled

WSNs is still at an infancy stage. In contrast, substantial

research has already been conducted in the area of visu-

alisation for computer security [4], [9]). Several security

visualisation solutions have also been proposed for 802.11-

like networks [10]. Many of these approaches have been

proven to be effective at allowing users to discover malicious

activities such as worms, DoS attacks as well as probing

attacks. Though powerful the aforementioned solutions are,

they are not directly applicable to WSNs because several

of the characteristics these networks possess, impose a re-

examination of the security visualisation problem. Compared

to the previous security visualisation methods, within EyeSim,

we apply as well as develop novel visualisation algorithms for

detecting wormholes in one single view.

In the context of WSNs, several other network visualisation

tools have been proposed to graphically monitor real-world

or simulated sensor network deployments [11] and display

live information about the network topology and the collected

sensory data in order to enable live debugging of the deployed

sensor network.

Early in 2004, Wang and Bhargava [12] proposed a security

enhancing visualisation mechanism for WSNs, called MDS-

VOW, which is capable of identifying the occurrence of a

wormhole attack in stationary wireless sensor networks. Wang

and Lu [13] extended the MDS-VOW concept proposing

an improved detection mechanism, called interactive visual-

isation of wormholes (IVoW). IVoW mechanism efficiently

integrates automated intrusion detection algorithms with visual

representation and user interaction to support visualisation of

several wormholes in large-scale dynamic WSNs. Simulation

results showed that IVoW accelerates the detection process

and improves the algorithm accuracy when compared to the

MDS-VOW approach.

Lu et al. [14] developed an integrated approach to detect

Sybil attacks in mobile WSNs through visualizing and analyz-

ing multiple reordered topology patterns. Automated reorder-

ing and evaluation algorithms used here reveal the malicious

nodes in the network topology faster and more accurately.

The proposed approach also provides a time-series analysis

in order to identify attack durations. This analysis is based on

time histograms and an automated time segmentation method.

Overall, this approach was evaluated through a series of real-

life attack scenarios, and has shown success at unveiling

unknown Sybil attacks.

Abuaitah et al. [15], developed a security visualisation

system, called SecVizer, capable of parsing any QualNet

generated traffic trace from both wired and wireless networks.

SecVizer combines topology visualisation with the parallel

coordinate plot technique in order to obtain a faster and more

effective detection of network vulnerabilities. By exploring no-

ticeable traffic patterns at both the network topology window

and the parallel plot window, the tool has demonstrated its

ability to detect various malicious network activities, most

notably, Distributed Denial of Service (DDoS) attacks. The

tool, in its current status, is intuitive enough to allow an analyst

to process network events in real-time, but further drill down

depth is needed to come up with a firm final resolution.

Recently, Shi et al. [16] proposed the Sensor Anomaly

visualisation Engine (SAVE) system; a representative approach

to sensor network anomaly detection and fault diagnosis

through visualisation. The SAVE system encompasses three

distinct visualisation components that interpret the topologi-

cal, correlational and dimensional sensor data dynamics and

their anomalies. SAVE was validated through a case study

deployment on the real-world large-scale WSN system called

GreenOrbs.

Unlike previous approaches, EyeSim provides a single,

effective, and clear-cut visualisation environment that exposes

multiple wormhole links. EyeSim is portable to a smart

phone and is characterized by a pervasive look that offers the

security analyst a monitoring tool to directly analyse and detect

ongoing threats experienced by the IoT under investigation.

III. NETWORK ASSUMPTIONS

A. Network Model

EyeSim monitors an IP-enabled WSN comprised of N

sensor nodes in a deployment area of E metric units. All

nodes are IEEE 802.15.4-compliant and they are allowed to

move or remain stationary. In addition, nodes are unaware of

their location; their exact coordinates are unknown. Moreover,

the initial position of the nodes is also unknown. Each node

has a fixed radio transmission range of R radius. As a result,

each node forms a sensing coverage of a disk equal to

πR2 quadratic metric units. Nodes are able to move without

restrictions in the area having a predefined speed of S metric

units per sec. It is assumed that there is not a predefined and

known moving pattern that nodes follow on their movement.

Two nodes are considered as neighbors when the distance

between them is less or equal to the transmission range R.

Let Mi define the neighbor list of node i, where 1 ≤ i ≤ N .

Obviously, these lists are continuously changed since the nodes

always change position. Furthermore, let Hi denote the next

hop node of each node i in the network. Each node forwards

the sensed data to this node, Hi, and this process continues

until the data reaches the sink node (typical reporting paradigm

2016 9th IFIP Wireless and Mobile Networking Conference (WMNC)

in WSNs). Similarly, the routing path Ri of each node is

defined, where Ri includes all hops that a data packet passes

until reaching the sink node.

A controller node is a node that collects network data from

each sensor node and then it proceeds to data integration,

process, and visualisation [17]. In the context of this paper it

is considered that the sink node plays the role of the controller

node. Thus, the sink node collects and process specific network

data periodically. The data collection includes a) the neighbor

list Mi, b) the routing path Ri, and c) the next hop Hi of

each i node. The time period in which the data collection

takes place is denoted by T . It is worth mentioning that the

data collection is feasible when the nodes are connected with

the sink node. If a node remains unconnected (e.g., due to its

movement beyond the network coverage) then the controller

node assumes that this node is currently out of the network

coverage.

B. Wormhole Attack Model

A wormhole attack is a special type of attack on sensor net-

works in which two colluding malicious nodes use wormhole

links to capture and replay communicated messages in order

to disrupt the network protocol. To launch a wormhole attack,

the colluded malicious nodes establish a direct communication

channel between themselves bypassing several intermediate

nodes. The established channel can be an out-of-band high-

speed communication link or an in-band logical tunnel. Once

established, the wormhole link attracts most of the traffic

since the control packets traversing through a wormhole link

advertise a much better link metric. Selection of such links

results in denial-of-service (DoS), affecting the performance

of the network severely. It is even possible to occur more

than once wormhole links making the problematic situation

yet harder. It has been shown that a strategic placement of the

wormhole can disrupt on average 32% of all communication

across the network [18].

Due to the nature of the deployment procedure it is consid-

ered that no node can be fully trusted since there is lack of any

trust model in the network. Besides, nodes are not aware of

their actual location and they are not equipped with location

verification equipment.

When a wormhole attack is launched then a link of ma-

licious nodes is formed. One of those two nodes advertises

a low link metric and attracts the traffic originated from its

neighbors. The next hop of this node is the other edge of

the wormhole link. In reality, the malicious nodes are not

neighbors. As a result, the network traffic that is bypassed

through the wormhole link is lost. The malicious nodes that

form the wormhole link are allowed to move similar to the

other legitimate nodes.

IV. EYESIM: A MOBILE APPLICATION FOR WSN THREAT

VISUALISATION

A. Motivation

The motivation behind the implementation of EyeSim lies

in the fact that all nodes that are harmfully affected (victims)

by the wormhole link remain unconnected as long as the

wormhole link stays alive. Further, there is a common feature

that all victims share; they all have recorded one of the

malicious node (the one that advertises the low link metric)

in their routing path. Hence, the malicious nodes might be

exposed if the controller node forms the list of the unconnected

nodes and processes the last recorded routing path of each one

of those nodes. However, this methodology should be carefully

followed since a false alarm may occur if the controller results

in a misleading outcome. For example, it is possible for the

controller node to trigger a false alarm if two (or more)

legitimate nodes move out of the network coverage and loss

their connection with their neighbors.

B. EyeSim Graphical User Interface (GUI)

EyeSim is a system that fully leverages the power of both

visualisation and anomaly detection analytics to guide the

user to quickly and accurately detect wormhole attacks in IP-

enabled WSNs. Figure 1 illustrates the main Graphical User

Interface (GUI) of the EyeSim mobile application. Figure 1a

highlights the sensor network topology under investigation

that is comprised of 50 randomly deployed nodes. Figure 1b

depicts the network under normal operation. The lack of red

warning lines indicates that no wormhole links are currently

present in the network. In Figure 1c, multiple red “eye” lines

are present in the visual display alerting the user that the

network is under attack.

The EyeSim system builds on two core components; the

wormhole anomaly detection engine (WAD), and the visuali-

sation engine. The WAD component represents the system’s

automated anomaly detection logic, while the visualisation

engine, is the projection tool. Next we describe, each of these

components in detail.

C. The Wormhole Anomaly Detection Engine

The WAD engine was devised to monitor, detect, and isolate

wormhole attacks in mobile WSNs that do not have a common

authentication entity. This engine was designed to analyze

observable patterns from time-dependent network routing dy-

namics. WAD is enhanced with a cognitive wormhole de-

tection algorithm which is capable of exposing concurrent

wormhole links.

Algorithm 1 illustrates the steps of WAD towards detecting

and isolating the potential malicious nodes in the WSN. The

algorithm receives the number of sensor nodes (N), the time

period (T), the neighbor list of all nodes M1,M2, . . . ,MN ,

and the next hop list of all nodes H1, H2, . . . , HN and triggers

or not an alarm. If an alarm is triggered a detected list of

malicious nodes are provided (W). The algorithm runs at

each T time period. Initially, it forms the U list of nodes

that during this time period remained unconnected. The con-

troller identifies the unconnected nodes by checking whether

it received data traffic from them (during the time window T).

Then it interprets the neighbor list of the unconnected nodes.

It calculates the intersection of all those lists. If a common

element is found then it computes the whole wormhole link by

2016 9th IFIP Wireless and Mobile Networking Conference (WMNC)

Fig. 1. EyeSim GUI showing a) the network topology comprised of 50 randomly deployed nodes, b) the network under normal operation (no warnings), and
c) the network under attack (6 warnings).

taking the next hop of the initial nodes that has been extracted

from the intersection. An alarm is triggered if the W set is

not empty.

Algorithm 1 WAD: The Wormhole Anomaly Detection Al-

gorithm

INPUT: The number of sensor nodes (N), the time period

(T), the neighbor list of all nodes M1,M2, . . . ,MN , the

routing path of all nodes R1, R2, . . . , RN , and the next hop

list of all nodes H1, H2, . . . , HN

OUTPUT: The list of detected malicious nodes

(W1,W2, . . .)

for each time period T do

form the U list

W = RU1
∩RU2

∩ . . .

W = W ∪HW1
∪HW2

. . .

if W 6= ∅ then

Trigger an alarm

Isolate the nodes that are included in W

end if

end for

D. The Visualisation Engine

The main objective of the EyeSim’s visualisation engine is

to project the outcome of the WAD in an effective visual-

assisted way. The following targets are set regarding the

visual-assisted environment; a) the engine should produce a

simple yet effective, dynamic visualisation interface, b) the

produced visualisation interface should be cut-clear and direct

by revealing the actual results of the WAD in an efficient way,

c) the projected visual forms should be real-time, informative,

and capable of directly indicating potential threats even in

limited monitor screens such as smart phones and tablets.

In essence, EyeSim projects an eye in a 2D planar view

(see Figure 1b). The eye is shaped using multiple ellipses.

The behavior of each node is represented by an ellipse. Each

ellipse has a characteristic color and a unique height, while

all ellipses have the same width.

The height of the ellipse represents the node’s latency. The

node latency is measured by the controller and it is defined as

the time elapsed between the last successful data reception by

a sensor node and the current time. Normally, the node latency

reveals how long a legitimate node remains unconnected.

Three main colors are utilized for identifying the state of

each node (blue, green and red). A node may be in normal

mode, unconnected, or a victim node. A time window equal

to z×T, z = 1, 2, . . . is used as a threshold for distinguishing

the node state. If the node latency is lower than the time

threshold, then the mode of this node is normal. The ellipse

that corresponds to this node is colored with blue. On the other

hand, if a node experiences latency higher than the threshold,

then the WAD engine is triggered. The result of the WAD

determines the state of this node. If no alarm is triggered,

then all nodes that experience higher latency than the threshold

are classified as unconnected. Those nodes are colored with

green. Finally, if malicious nodes are exposed by WAD, those

legitimate nodes that have included malicious node(s) in their

routing path are deemed as victim nodes. The ellipse color for

2016 9th IFIP Wireless and Mobile Networking Conference (WMNC)

Fig. 2. EyeSim GUI showing a) a 75-node network, and b) a 100-node
network under attack.

highlighting the victim nodes is the red one (see Figure 1c).

On the contrary, if the routing path of such a node does not

include malicious node(s), then this node is characterized as

unconnected node and the corresponding ellipsis is shaped

with green color.

An important observation regarding EyeSim’s visual design

is the fact that it does not face scalability issues that many

security visualisation tools typically encounter. As illustrated

in Figure 2, the two different in size networks (comprised of

75 and 100 nodes respectively) are under concurrent wormhole

attacks. Despite the growth in the amount of data being created

and the size of the data set, EyeSim does not have any problem

in efficiently projecting the scalable data, and at the same time,

it is not lead to other undesired phenomena such as occlusion

or overcrowding of the display [19]. Finally, it is important to

note that the visualisation engine produces various messages

and alerts that inform the user about the current network

status or ask the user to take some actions (see Figure 3).

For example, by pressing the red button in the center of the

application the administrator can see the list of nodes that

belong to each category, i.e., legitimate, unconnected, and

victim nodes.

E. System Architecture

The architecture of the EyeSim application consists of four

parts: a) the mobile client, b) the web page, c) the server, and

d) the Google Cloud Messaging (GCM). Each of these parts

is responsible for a different task such as for representing the

network’s behaviour or for calculating the new points for each

node of the network, etc.

The mobile client is an application written in Java, while the

web page is based on the CodeIgniter PHP web framework.

The web server contains a set of scripts that help the system

Fig. 3. Message outputs produced by the EyeSim GUI.

calculate the new position of network nodes. Additionally, both

the web site and the mobile client use a MySQL database

to process the network data. Besides that the database also

stores user account information as well as the last position of

the network nodes. Finally, the GCM is a service provided

by Google and allows the system to generate and send push

notifications to the mobile device. The EyeSim uses the client-

server communication model between all parts. This means

that the model is applied between the mobile client and web

server, as well as, the web site and the web server.

F. System Analysis

As already revealed, EyeSim uses different technologies and

tools to allow the application to make calculations and display

the result of these calculations to the user’s device. These

technologies are used either as stand-alone technologies or in

a combination with others to produce the expected result.

The Android operating system was chosen as the most

suitable system for the development of the main part of this

system, namely the mobile client. The mobile client is an

application, which is written using the Java programming

language in order to set up the functionality and the XML

language in order to produce the user interface.

The web site is a dynamic web page, which have been

written using one of the most known frameworks for web

programming, namely the CodeIgniter. This framework uses

the PHP programming language to connect to a database

in order to store and retrieve data from it. Additionally,

the CodeIgniter allows the user to create a connection to

a database easily, so he/she can execute queries such as

select, update or insert. This framework separates the web

site into three different components; the model, the projection

and the controller. Each of these components are responsible

for different actions. The component of the model provides

2016 9th IFIP Wireless and Mobile Networking Conference (WMNC)

the necessary code in order to execute code against to the

database such as store, retrieve or update data. The projection

component provides the graphic design of the web page, which

is used for the interaction with the user. Finally, the controller

component provides the connection between the model and

the projection, so that the latter can present to the user the

information the system retrieved from the database.

Regarding PHP, this is a well known server side program-

ming language. This programming language is executed on

the web server and presents the result of the code execution

to the user using the HTML language. PHP is an object

orient programming language (OOP). Similar to every OOP

language, it allows the user to create objects with several

attributes/characteristics and to modify them through the PHP

code. Within EyeSim, the PHP web programming language

has been used for the development of several scripts, which

are used from the mobile client in order for example to authen-

ticate the user or to request from the server new coordinates

for the network nodes. Additionally, as mentioned before, PHP

was used in order to implement the functionality of the web

site.

Another technology that is used within the EyeSim appli-

cation is the Jquery framework. This framework allows the

developer to write Javascript code in order to trigger special

handlers for several HTML elements on specific user actions,

such as the button click or value change in a input area.

JSON is another programming language used within Eye-

Sim. This language is used to describe objects. It is used for

the data exchange between client and server. As the name of

this language shows, it is a part of JavaScript language as well.

This language is independent of the programming language

that is used, which make it ideal for data exchange. JSON

consists of two parts. The first part is a pair of name-value,

which is called object. The second part is a list of values that

are ordered, and it is called array.

MySQL is the last technology used by EyeSim. MySQL is

one of the biggest Relational Database Management System

(RDBMS) and it is an open source. This is a type of database,

which is used for web applications and runs on a server.

This kind of database can be applicable to big and small web

applications. It is fast, reliable and easy to use. Finally, it can

be executed in the most of the well-known platforms using the

standard SQL for the queries.

V. PERFORMANCE EVALUATION

A. Evaluation Scenario

In order to assess the proposed framework a real-time

simulation scenario was considered. According to the scenario

a set of 802.15.4-compliant sensor nodes was considered in a

deployment area of 1280× 720 meters. The number of sensor

nodes was varied from 50 to 100 with a step of 10 nodes. All

nodes were allowed to move within the deployment area. A

fixed communication range of 100 meters was assumed for all

nodes. The initial position of each node is random within the

deployment area. In addition, the nodes are unaware of their

position coordinates. Each node was free to move anywhere

in the area. The velocity is fixed for all nodes and equal

to 1m per minute. The moving pattern is simple: each node

randomly changes its direction each T = 60 seconds. It is

worth mentioning that even the sink node is always on the

move. The threshold time window was set equal to 3× T .

Regarding the routing protocol a simple hop count metric

was considered, where the node that advertises the minimum

hop distance towards the sink node is preferred by its neigh-

bors. Two nodes are neighbors when their Euclidean distance

is less or equal to the communication range (note that no

obstacles were inserted in the deployment area).

EyeSim was assessed in order to demonstrate its efficacy

in detecting wormhole attacks within the deployment area. To

this extent, we deliberately considered two wormhole links

which were active at the beginning of the experiments. Each

node that forms the wormhole link advertises a quite small

hop metric to its neighbors. Moreover, it advertises a next hop

that is not a neighbor of the wormhole link node.

The detection accuracy of EyeSim is measured in detecting

none, one, or all the wormhole links. A True Positive (TP)

result is associated to EyeSim when a sensor node is identified

as a wormhole link node and that node is indeed a malicious

one. On the other hand, a False Negative (FN) outcome occurs

when EyeSim identifies a node as a malicious one but this node

is a legitimate one. Next, we demonstrate numerical results

related to the probability that EyeSim detects a TP or a FN

case as the number of sensor nodes is changed.

Each simulation experiment was conducted for 20 times.

The average values of all experiments were extracted. An

Android-based smart phone was used for the EyeSim process

and evaluation.

B. Results

Figure 4 illustrates the accuracy of EyeSim in terms of TP

and FN. The number of sensor nodes is varied from 50 to

100 with a step of 10. First, it is clear that as the network

becomes more dense the accuracy of EyeSim becomes higher.

The probability of a TP result is about 0.4 when the number

of nodes is 50, while it is getting much better, equal to 0.8,

when the number of nodes reaches the maximum value which

is 100. This is attributed to the fact that the accuracy of

EyeSim depends on the network density. As the number of

sensor nodes is getting larger it is unlikely for a node to be

unconnected. Given that an unconnected node may trigger a

false alarm it is evident that a dense sensor network guarantees

better results in terms of accuracy. Nevertheless, Figure 4

reveals the relation between TP and FN. If EyeSim detects

correctly a threat then TN wins; otherwise the result is deemed

as false and FN wins.

Figure 5 depicts the probability of resulting a single or

double detection. Obviously, it is considered that in this case

the EyeSim result was a TP case. As previously mentioned,

the number of the correct decisions is getting higher as the

network nodes are increased. This is the rationale behind the

increase of the single detection as the network becomes more

dense. More accurate decisions happen; most of them are

2016 9th IFIP Wireless and Mobile Networking Conference (WMNC)

50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of sensor nodes

P
ro

b
ab

il
it

y

True Positive

False Negative

Fig. 4. Wormhole threat detection accuracy in terms of true positive and false
negative.

50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of sensor nodes

P
ro

b
ab

il
it

y

Single Detection

Double Detection

Fig. 5. Wormhole detection results. Single detection means that one of totally
two wormhole link has been revealed. Double detection means that both two
wormhole links have been detected.

classified as single detection. However, it is worth mentioning

that the portion of totally wormhole detection is fairly high.

For example, the half of detection attempts was totally correct,

revealing both wormhole links, when the number of nodes was

100.

Overall, EyeSim offers a way of detecting serious threats,

such as wormhole attacks, in dynamic, moving sensor net-

works, where multiple attacks are possible. We assessed Eye-

Sim under pressing and demanding evaluation environment;

the results demonstrate an accurate visual-assisted component

which is capable of detecting multiple wormhole attacks

in dynamic traffic conditions. The detection capabilities of

EyeSim are maximized when the sensor network becomes

dense, where the discovery of concurrent threats reaches 80%.

VI. CONCLUSIONS

The ever-increasing amount of security events reported in

mission-critical applications IP-enabed WSNs are envisaged

to support asks for new tools to deal with them. As a

novel network security visualisation tool, EyeSim stands out

as one such solution. In this work, we proposed a robust,

visual-assisted anomaly detection system that is capable of

identifying concurrent wormhole attacks; one of the most

daunting challenges in the sensor network security field. In

the future, we intend to validate the EyeSim system through

extended user studies where network analysts and experts will

use the system and provide feedback on its usability. Moreover,

we will extend the capabilities of the EyeSim system in order

to enable the tool to detect a series of new attack patterns,

such as Sybil attacks, Sinkhole attacks, etc.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
Sensor Networks - A Survey,” Computer Networks, vol. 38, no. 4, pp.
393–422, Mar. 2002.

[2] X. Chen, K. Makki, K. Yen, and N. Pissinou, “Sensor network security:
a survey,” Communications Surveys Tutorials, IEEE, vol. 11, no. 2, pp.
52–73, 2009.

[3] R. Marty, Applied Security Visualization, 1st ed. Pearson Education
Inc., 2009.

[4] G. Conti, Security Data Visualization: Graphical Techniques for Network
Analysis, 1st ed. No Starch Press, Oct. 2007.

[5] S. Card, J. Mackinlay, and B. Shneiderman, Readings in Information

Visualization: Using Vision to Think. San Francisco: Morgan Kaufmann
Publishers, 1999.

[6] D. A. Keim, “Information Visualization and Visual Data Mining,” IEEE
Transactions on Visualization and Computer Graphics, vol. 8, no. 1, pp.
1–8, Jan. 2002.

[7] M. Abomhara and G. Koien, “Security and privacy in the internet of
things: Current status and open issues,” in Privacy and Security in
Mobile Systems, 2014 International Conference on, May 2014, pp. 1–8.

[8] E. Karapistoli and A. A. Economides, “ADLU: a novel anomaly
detection and location-attribution algorithm for UWB wireless sensor
networks,” EURASIP Journal on Information Security, vol. 2014, no. 1,
pp. 1–12, 2014.

[9] K. Lakkaraju, R. Bearavolu, A. Slagell, W. Yurcik, and S. North,
“Closing-the-Loop in s. In NVisionIP: Integrating Discovery and Search
in Security Visualization,” in Visualization for Computer Security, IEEE
Workshops on, 2005, pp. 75–82.

[10] K. Prole, J. R. Goodall, A. D. D’Amico, and J. K. Kopylec, “Wireless
Cyber Assets Discovery Visualization,” in Proceedings of the 5th Inter-

national workshop on Visualization for Computer Security, ser. VizSec
’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 136–143.

[11] B. Parbat, A. K. Dwivedi, and O. P. Vyas, “Article: Data visualization
tools for wsns: A glimpse,” International Journal of Computer Applica-

tions, vol. 2, no. 1, pp. 14–20, May 2010, published By Foundation of
Computer Science.

[12] W. Wang and B. Bhargava, “Visualization of wormholes in sensor
networks,” in ACM workshop on Wireless Security. ACM Press, 2004,
pp. 51–60.

[13] W. Wang and A. Lu, “Interactive wormhole detection in large scale
wireless networks,” in Visual Analytics Science And Technology, IEEE

Symposium On, 2006, pp. 99–106.
[14] A. Lu, W. Wang, A. Dnyate, and X. Hu, “Sybil attack detection through

global topology pattern visualization,” Information Visualization, vol. 10,
no. 1, pp. 32–46, Jan. 2011.

[15] G. Abuaitah and B. Wang, “Secvizer: A security visualization tool for
qualnet-generated traffic traces,” in Proceedings of the 6th International

Workshop on Visualization for Cyber Security (VizSec), ser. VizSec ’08,
2009, pp. 111–118.

[16] L. Shi, Q. Liao, Y. He, R. Li, A. Striegel, and Z. Su, “SAVE: Sensor
anomaly visualization engine,” in IEEE Conference on Visual Analytics

Science and Technology (VAST), oct. 2011, pp. 201–210.
[17] W. Wang and A. Lu, “Visualization assisted detection of Sybil attacks in

Wireless Networks,” in Proceedings of the 3rd international workshop

on Visualization for computer security, ser. VizSEC. IEEE, 2006, pp.
51–60.

[18] M. Khabbazian, H. Mercier, and V. Bhargava, “Severity analysis and
countermeasure for the wormhole attack in wireless ad hoc networks,”
Wireless Communications, IEEE Transactions on, vol. 8, no. 2, pp. 736–
745, 2009.

[19] H. Shiravi, A. Shiravi, and A. A. Ghorbani, “A survey of visualization
systems for network security,” IEEE Transactions on Visualization and

Computer Graphics, vol. 18, no. 8, pp. 1313–1329, 2012.

2016 9th IFIP Wireless and Mobile Networking Conference (WMNC)

