

Πανεπιστήμιο Μακεδονίας
ΠΜΣ Πληροφοριακά Συστήματα
Τεχνολογίες Τηλεπικοινωνιών & Δικτύων
Καθηγητές: Α.Α. Οικονομίδης & Α. Πομπόρτσης

University of Macedonia
Master Information Systems
Networking Technologies
Professors: A.A. Economides & A. Pomportsis

Θέμα: Mη εμπορικό Λογισμικό για Προσομοιώσεις Δικτύων

Subject: Free Tools for Network Simulations

Γιοβανάκης Γιάννης
 AM 2406

 Θεσσαλονίκη 2007

 Giovanakis Jiannis
 AM 2406

 Thessaloniki 2007

Abstract
Network simulation is broadly used today by a number of people working on the field of
computer networks. Academicians or professionals, individual or companies use several
network simulation software tools for purposes such as: research (on topologies, protocols,
etc.), education, assessment of propriety or effectiveness and many others.
There are many network simulators, both commercial and non-commercial. Ussually the
non-commercial ones are open–source programs developed by universities for research
purposes and free distributed. I will present in this paper five of such open source
simulators in an attempt those five tools to be the most indicative and represantative of the
kind.

Περίληψη
Η προσομοίωση δικτύων χρησιμοποιείται σήμερα από ένα μεγάλο πλήθος ανθρώπων που
ασχολούνται με τα δίκτυα υπολογιστών. Αυτοί οι άνθρωποι μπορεί να είναι ακαδημαϊκοί ή
επαγγελματίες, άτομα ή εταιρείες που χρησιμοποιούν διάφορα εργαλεία λογισμικού για
προσομοίωση δικτύων, με σκοπούς όπως: η έρευνα (πάνω σε τοπολογίες, πρωτόκολα,
κλπ), η εκπαίδευση, η αξιολόγηση καταλληλότητας ή αποτελεσματικότητας και πολλοί
άλλοι.
Υπάρχουν πολλοί προσομοιωτές δικτύων, τόσο εμπορικοί όσο και μη εμπορικοί. Συνήθως
αυτοί που είναι μη εμπορικοί είναι προγράμματα ανοιχτού κώδικα που αναπτύσσονται από
πανεπιστήμια για ερευμητικούς σκοπούς και διανέμονται δωρεάν. Σ’ αυτή την εργασία θα
παρουσιάσω πέντε τέτοια εργαλεία προσωμοίωσης προσπαθώντας αυτά τα πέντε να
αποτελούν τα ενδεικτικότερα και πιο αντιπροσωπευτικά του είδους.

Page 2 of 22

Περιεχόμενα
Περίληψη.. 1

Περιεχόμενα ... 3

1. Εισαγωγή .. 4

2. Imunes .. 5

Edit mode. .. 6

Exec mode... 7

3. NS-2 (Network Simulator 2) ... 7

4. NCTUns .. 10

5. DESMO-J ... 17

6. deX .. 18

7. Συμπεράσματα και μελλοντικές εργασίες ... 21

8. Αναφορές και Βιβλιογραφία ... 22

Contents

Abstract .. 1

Contents.. 3

1. Introduction ... 4

2. Imunes .. 5

Edit mode. .. 6

Exec mode... 7

3. NS-2 (Network Simulator 2) ... 7

4. NCTUns .. 10

5. DESMO-J ... 17

6. deX .. 18

7. Conclusions and future work ... 21

8. References .. 22

Page 3 of 22

1. Introduction

Simulation is one of the most widely used quantitative approaches to decision making. It is
a method for learning about a real system by experimenting with a model that represents
the system. The simulation model contains the mathematical expressions and logical
relationships that describe how to compute the value of the outputs given the values of the
inputs. Any simulation model has two inputs: controllable inputs and probabilistic inputs.
Simulation is not an optimization technique. It is a method that can be used to describe or
predict how a system will operate given certain choices for the controllable inputs and
randomly generated values for the probabilistic inputs.1

In computer network research, network simulation is a technique where a program
simulates the behavior of a network. The program performs this simulation either by
calculating the interaction between the different virtual network entities (hosts/routers, data
links, packets, etc) using mathematical formulas, or actually capturing and playing back
network parameters from a real production network. Using this input, the behavior of the
network and the various applications and services it supports can be observed in a test lab.
Various attributes of the environment can also be modified in a controlled manner to asses
these behaviors under different conditions. When a simulation program is used in
conjunction with live applications and services in order to observe end-to-end performance
to the user desktop, this technique is also referred to as network emulation.

Network simulators are used to predict the behavior of networks and applications under
different situations. Researchers use network simulators to see how their protocols would
behave if deployed. It is typical to use a network simulator to test routing protocols, MAC
(Medium Access Control) protocols, transport protocols, applications etc. Companies use
simulators to design their networks and/or applications to get a feel for how they will
perform under current or projected real-world conditions.

The simulator (or network simulator) is the program in charge of calculating how the
network would behave. They may be distributed in source form (software) or provided in
the form of a hardware appliance. Users can then customize the simulator to fulfill their
specific analysis needs.2
Properties of a network simulator, which can be used as well for categorizing criteria, may
be the following:

1. Operating system that is running on. The most often case is Linux, FreeBSD or
some sort of Unix but also Solaris, Mac, Windows, HP-UX, MS, MS-dos can be
met.

2. Availability of source code. A simulator can be distributed with its source code for
any user interested in further development of the application.

3. Free of any charge or not. Although an open source simulator most of the times
means free of charge the opposite is not always true. It can be distributed for free
but no code available.

4. Discrete event or continuous time/space modeling. Most of the computer network
simulators use discrete event modeling which is most appropriate for representing
networks.3,4

1 An introduction to management science. by D.R.Anderson, D.J.Sweeney, T.A.Williams, Chapter 13, page 586,
THOMSON SOUTH – WESTERN ed.11th.
2 http://en.wikipedia.org/wiki/Network_simulation
3 http://en.wikipedia.org/wiki/Discrete_event_simulation
4 Free tools for network simulation by Voultiou Efthimia of MIS University Of Macedonia, 2006

Page 4 of 22

5. Software development environment (framework) or install and ready to go
package.

6. Broad range of networks, protocols, network components, etc. covered or specific
for e.g. wireless networks, ATM protocol, transport layer, etc.

7. Simulation, emulation software or both. Simulation s/w simulates offline a
network, real or imaginary, that all of its entities are virtually operating in the
model. Emulation s/w makes use of both parts of a real network (servers, PCs,
links) and virtual parts (entities). Thus emulation must, at least partially, operate
online with a real network in order to be fed from it with its required inputs.5

The following network simulators presented in this paper are: Imunes, NS-2, NCTUns,
DESMO-J and deX .

2. Imunes
Imunes is an Integrated Multiprotocol Network Emulator / Simulator framework based on
the FreeBSD 4.x OS kernel. Kernel is partitioned into multiple lightweight virtual nodes,
which can be interconnected via kernel-level links to form arbitrarily complex network
topologies.
The modified FreeBSD kernel allows multiple network stack instances to simultaneously
coexist within a single kernel. Each network stack instance can act as an independent
virtual node (router or host), connected to other virtual nodes via simulated links, or
directly to the outside world via standard network interfaces.
This allows for complex emulated IP network configurations to be constructed on a single
machine.6
The concept of using virtual nodes inside a kernel for fast network emulation is not entirely
new, yet previously published work generally advocated the implementation of kernel-
level virtual nodes with capabilities limited to only certain simple functions, such as
passing of network frames from one queue to another based on a static precomputed path.
The development of Imunes is based on a thesis that virtual nodes, which could offer the
identical rich set of capabilities as the standard kernel does, can be implemented very
efficiently by reusing the existing OS kernel code.
The model therefore not only provides each node with an independent replica of the entire
standard network stack, thus enabling highly realistic and detailed emulation of network
routers; it also enables each virtual node to run a private copy of any unmodified user-level
application, including routing protocol daemons, traffic generators, analyzers, or
application servers. Furthermore, in later development phases it is expected to enable each
virtual node to support multiple network protocols concurrently, such as both IPv4 and
IPv6, which would bring Imunes a step closer to allowing for emulation of true
multiprotocol networked environments.

During the initial development phase, which is supported by the Croatian Ministry of
Science and Technology research grant IP-2003-143, a network emulator prototype will be
developed with basic support for virtual Ethernet, point-to-point and Frame Relay links,
dynamic RIP and OSPF routing, together with an integrated GUI environment for
specification and management of simulation scenarios.
IMUNES comes with a simple Tcl/Tk based graphical user interface console, which
operates in two modes: edit mode and exec mode.

5 http://www.topology.org/soft/sim.html
6 http://www.tel.fer.hr/imunes/

Page 5 of 22

Edit mode.
One can use symbols on the left side of the window in order to create network of desired
topology. Meaning of icons is following: select, delete, link, router, LAN switch, server
node, pc node, RJ45 (interface to the outside world via a real / physical Ethernet interface).
One can edit default parameters by double click of the mouse on the node/ link you want to
edit. Almost every parameter is editable, from node labels to link bandwidth

Figure 2.1 User interface layout

Figure 2.2 An example of a simulated network topology

Page 6 of 22

Exec mode.
In exec mode the researcher executes the set up experiment, performing starting and
termimating of the experiment. For all other action the user must work from a command
console.7

3. NS-2 (Network Simulator 2)
NS2 is an open-source simulation software that is part of a research project, called VINT,
funded by DARPA.
The aim of VINT is to build a network simulator that will allow the study of scale and
protocol interaction in the context of current and future network protocols. VINT is a
collaborative project involving USC/ISI, Xerox PARC, LBNL, and UC Berkeley.8
NS2 is a discreet event simulator targeted at networking research and provides substantial
support for simulation of routing, multicast protocols and IP protocols, such as UDP, TCP,
RTP and SRM over wired and wireless (local and satellite) networks. It has many
advantages that make it a useful tool, such as support for multiple protocols and the
capability of graphically detailing network traffic. Additionally, NS2 supports several
algorithms in routing and queuing. LAN routing and broadcasts are part of routing
algorithms. Queuing algorithms include fair queuing, deficit round-robin and FIFO.
NS2 is available on several platforms such as FreeBSD, Linux, SunOS and Solaris. NS2
also builds and runs under Windows.
NS is written in C++. The package provides a compiled class hierarchy of objects written
in C++ and an interpreted class hierarchy of objects written in OTcl (MIT's object
extension to Tcl - Tool Command Language) which are closely related to the compiled
ones. The user creates new objects through the OTcl interpreter. New objects are closely
mirrored by a corresponding object in the compiled hierarchy.
Tcl procedures are used to provide flexible and powerful control over the simulation (start
and stop events, network failure, statistic gathering and network configuration). The Tcl
interpreter has been extended (OTcl) with commands to create the networks topology of
links and nodes and the agents associated with nodes.
The simulation is configured, controlled and operated through the use of interfaces
provided by the OTcl class Simulator. The class provides procedures to create and manage
the topology, to initialize the packet format and to choose the scheduler. It stores internally
references to each element of the topology. The user creates the topology using OTcl
through the use of the standalone classes node and link that provide a few simple
primitives.
The function of a node is to receive a packet, to examine it and map it to the relevant
outgoing interfaces. A node is composed of simpler classifier objects. Each classifier in a
node performs a particular function, looking at a specific portion of the packet and
forwarding it to the next classifier.
Agents are another type of components of a node: those model endpoints of the network
where packets are fed or consumed. Users create new sources or sinks from the class
Agent. NS currently supports various TCP agents, CBR, UDP, and others protocols,
including RTP, RTCP, SRM. There is no mention of ATM protocols.
Links are characterized in terms of delay and bandwidth. They are built from a sequence of
connector objects. The data structure representing a link is composed by a queue of
connector objects, its head, the type of link, the ttl (time to live), and an object that
processes link drops. Connectors receive packet, perform a function, and send the packet to

7 http://www.tel.fer.hr/imunes/dl/imunes.pdf
8 http://www.isi.edu/nsnam/vint/

Page 7 of 22

the next connector or to the drop object. Various kinds of links are supported, e.g. point-to-
point, broadcast, wireless.
The output buffers attached to a link in a “real” router in a network are modeled by queues.
In NS, queues are considered as part of a link. NS allows the simulation of various queuing
and packet scheduling disciplines. C++ classes provided include drop-tail (FIFO) queuing,
Random Early Detection (RED) buffer management, CBQ (priority and round-robin),
Weighted Fair Queuing (WFQ), Stochastic Fair Queuing (SFQ) and Deficit Round-Robin
(DRR).
Traffic generation in NS looks rather basic in the current implementation. For the purpose
of TCP, only FTP and Telnet traffic can be generated; otherwise, NS provides an
exponential on/off distribution and it allows generating traffic according to a trace file.
In order to analyze results, NS provides classes to trace each individual packet as it arrives,
departs or is dropped, and to record any kind of counts, applied on all packets or a per-flow
basis. The trace can be set or unset as desired by the user.
The user has to specify the routing strategy (static, dynamic) and protocol to be used. This
is done with a procedure in the class simulator. Supported routing features include
asymmetric

Figure 3.1 An example of a simulated network topology in NAM graphic environment

routing, multipath routing, Distance Vector algorithm, multicast routing.
Other features of NS include error models where the unit could be packet, bit or time
based, and mathematical classes for the approximation of continuous integration by
discrete sums and for random number generation.
In order to verify some aspects of the protocol to be simulated, NS includes some
validation tests distributed with the simulator.
Νs as well includes capabilities to make the simulation topologies dynamic although this
latest point is still somewhat experimental.

Page 8 of 22

The simulation engine is extensible, configurable and programmable. The current
implementation is single-threaded (only one event in execution at any given time). It does
not support partial execution of events nor pre-emption.
Events are described by a firing time and a handler function. The type of event scheduler
used to drive the simulation can be chosen among the four presently available: a simple
linked-list (default), heap, calendar queue, and a special type called real-time. Each one is
implemented using a different data structure.
The simple linked-list scheduler provides a list of events kept in time-order, from the
earliest to the latest. This requires scanning the list to find the appropriate entry upon
insertion or deletion. The entry at the head is always executed first. Entries with the same
simulated time are extracted according to their order in the list.
The heap scheduler code is borrowed from the MARS-2.0 simulator (that itself borrowed
the code from MIT'S NETSIM). This implementation is superior to the linked list
scheduler when the number of events is large.
In the calendar queue scheduler implementation, events with the same “month/day” of
multiples “year” are recorded in one “day”.
The real-time scheduler is still under development and is currently a subclass of the list
scheduler. It is well suited when events arrive with a relatively slow rate. Execution of
events should occur in real time.
NS has scaling constraints in terms of storage requirements of the routing tables: each node
maintains a route to all other nodes in the network, resulting in aggregate memory. This
grows with the number of nodes in the network. VINT proposes to replace NS's flat
addressing conventions by implementing efficient hierarchical routing table look-ups in the
nodes objects.
NS represents an underlying transmission link and its corresponding scheduling and
queuing algorithms in a single object, but the VINT simulation framework will require
their separation in order to flexibly combine different scheduling algorithms with different
underlying link technologies. In the current implementation of NS, each module that
implements a scheduling discipline need be changed when adding modules to support a
new link type.
Another modification is the performance improvement to the event scheduler. The linear
search insertion algorithm should be replaced with a heap or a calendar queue. Coexistent
scheduling algorithms can be derived from base class abstraction and are easily
implemented in NS due to its C++ implementation.
A graphical interface of NS2 to setup network simulations is NAM that supports a drag-
and-drop user interface.
Nam is a Tcl/TK based animation tool for viewing network simulation traces and real
world packet traces. It supports topology layout, packet level animation, and various data
inspection tools.
Nam began at LBL. It has evolved substantially over the past few years. The nam
development effort was an ongoing collaboration with the VINT project. Currently, it is
being developed at ISI as part of the SAMAN and Conser projects.
For the study of protocol interaction and behaviour at significantly larger scale, the
simulator will provide two levels of abstraction. The detailed level simulator is the one
currently built. It allows a fine abstraction of the distinct modules of the simulation and
will later include an emulation interface that will allow incorporating a real network node
as a component of the simulation. The session level simulator will give a coarse-grain
abstraction. Data packets will be represented by flows instead of individual packets. This
will reduce the number of events and state required, at the cost of lost detail in the
simulation. As an instance, instead of tracing each packet through each router and link, the

Page 9 of 22

simulator only calculate the time for that packet to be received by the sink according to the
path used.
The project also hopes to apply parallel network simulation techniques because the limits
of a single-processor computational power will necessarily be stressed. The project will
implement a distributed version of the simulator.9,10,11

4. NCTUns
The NCTUns is a high-fidelity and extensible network simulator and emulator capable of
simulating various protocols used in both wired and wireless IP networks. Its core technology
is based on the novel kernel re-entering methodology invented by Prof. S.Y. Wang when he
was pursuing his Ph.D. degree at Harvard University. Due to this novel methodology, NCTUns
provides many unique advantages that cannot be easily achieved by traditional network
simulators such as ns-2 and OPNET.
Figure 4.1 Screenshot of topology editor

The NCTUns network simulator and emulator has many useful features listed below:
• It can be used as an emulator. An external host in the real world can exchange

packets (e.g., set up a TCP connection) with nodes (e.g., host, router, or mobile station)
in a network simulated by NCTUns. Two external hosts in the real world can also
exchange their packets via a network simulated by NCTUns. This feature is very useful
as the function and performance of real-world devices can be tested under various
simulated network conditions.

9 The ns Manual, September 2005
10 http://nsnam.isi.edu/nsnam/index.php/Contributed_Code#Documentation
11 http://www.linuxjournal.com/article/5929

Page 10 of 22

• It directly uses the real-life Linux’s TCP/IP protocol stack to generate high-fidelity
simulation results. By using a novel kernel re-entering simulation methodology, a
real-life UNIX (e.g., Linux) kernel’s protocol stack can be directly used to generate
high-fidelity simulation results.

• It can use any real-life existing or to-be-developed UNIX application program as a
traffic generator program without any modification. Any real-life program can be
run on a simulated network to generate network traffic. This enables a researcher to test
the functionality and performance of a distributed application or system under various
network conditions. Another important advantage of this feature is that application
programs developed during simulation studies can be directly moved to and used on
real-world UNIX machines after simulation studies are finished. This eliminates the
time and effort required to port a simulation prototype to a real-world implementation
if traditional network simulators are used.

• It can use any real-life UNIX network configuration and monitoring tools. For
example, the UNIX route, ifconfig, netstat, tcpdump, traceroute commands can be run
on a simulated network to configure or monitor the simulated network.

• Its setup and usage of a simulated network and application programs are exactly
the same as those used in real-world IP networks. For example, each layer-3
interface has an IP address assigned to it and application programs directly use these IP
addresses to communicate with each other. For this reason, any person who is familiar
with real-world IP networks can easily learn and operate NCTUns in a few minutes.
For the same reason, NCTUns can be used as an educational tool to teach students how
to configure and operate a real-world network.

• It simulates many different and new types of networks. The supported types include
Ethernet-based fixed Internet, IEEE 802.11(b) wireless LANs, mobile ad hoc (sensor)
networks, GPRS cellular networks, optical networks (including both circuit-switching
and busrt-switching networks), IEEE 802.11(b) dual-radio wireless mesh networks,
IEEE 802.11(e) QoS wireless LANs, Tactical and active mobile ad hoc networks, and
3dB beamwidth 60-degree and 90-degree directional antennas.

• It simulates various networking devices. For example, Ethernet hubs, switches,
routers, hosts, IEEE 802.11 (b) wireless stations and access points, WAN (for purposely
delaying/dropping/reordering packets), obstacle (block/attenuate wireless signal, block
mobile nodes’ movement, block mobile nodes’ views), GPRS base station, GPRS
phone, GPRS GGSN, GPRS SGSN, optical circuit switch, optical burst switch, QoS
DiffServ interior and boundary routers, IEEE 802.11(b) dual-radio wireless mesh
access point, IEEE 802.11(e) QoS access points and mobile stations, etc.

• It simulates various protocols. For example, IEEE 802.3 CSMA/CD MAC, IEEE
802.11 (b) CSMA/CA MAC, IEEE 802.11(e) QoS MAC, IEEE 802.11(b) wireless
mesh network routing protocol, learning bridge protocol, spanning tree protocol, IP,
Mobile IP, Diffserv (QoS), RIP, OSPF, UDP, TCP, RTP/RTCP/SDP, HTTP, FTP, Telnet,
etc.

• It simulates a network quickly. By combining the kernel re-entering methodology
with the discrete-event simulation methodology, a simulation job can be finished
quickly.

• It generates repeatable simulation results. If the user fixes the random number seed
for a simulation case, the simulation results of a case are the same across different
simulation runs even if there are some other activities (e.g., disk I/O) occurring on the
simulation machine.

• It provides a highly-integrated and professional GUI environment. This GUI can
help a user (1) draw network topologies, (2) configure the protocol modules used inside

Page 11 of 22

a node, (3) specify the moving paths of mobile nodes, (4) plot network performance
graphs, (5) playing back the animation of a logged packet transfer trace, etc. All these
operations can be easily and intuitively done with the GUI.

• Its simulation engine adopts an open-system architecture and is open source. By
using a set of module APIs provided by the simulation engine, a protocol developer can
easily implement his (her) protocol and integrate it into the simulation engine. NCTUns
uses a simple but effective syntax to describe the settings and configurations of a
simulation job. These descriptions are generated by the GUI and stored in a suite of
files. Normally the GUI will automatically transfer these files to the simulation engine
for execution. However, if a researcher wants to try his (her) novel device or network
configurations that the current GUI does not support, he (she) can totally bypass the
GUI and generate the suite of description files by himself (herself) using any text editor
(or script program). The non-GUI-generated suite of files can then be manually fed to
the simulation engine for execution.

• It supports remote and concurrent simulations. NCTUns adopts a distributed
architecture. The GUI and simulation engine are separately implemented and use the
client-server model to communicate. Therefore, a remote user using the GUI program
can remotely submit his (her) simulation job to a server running the simulation engine.
The server will run the submitted simulation job and later return the results back to the
remote GUI program for analyses. This scheme can easily support the cluster
computing model in which multiple simulation jobs are performed in parallel on
different server machines. This can increase the total simulation throughput.

• It provides complete and high-quality documentations. The GUI user manual has
118 pages while the protocol developer manual has 320 pages. NCTUns also provides
over 50 example simulation cases and their demo video clips to help a user easily
understand how to run up a simulation case.

Figure 4.2 Screenshot of performance monitor

Page 12 of 22

• It is continuously supported, maintained, and improved. New functions and

network types are continuously added to NCTUns to enhance its function, speed, and
capability. For example, WiMax wireless networks (including PMP and mesh modes)
and GEO satellite networks are being under development and will be released in
NCTUns 4.0.12

NCTUns supports the following types of network links and devices:

Device Acronym Technology Specification
Point-to-Point
Ethernet-like Link PPL For wired networks

Point-to-Point WDM
Optical Link WDMLINK For optical networks

Host HOST For wired networks
Hub HUB For wired networks
Switch SWITCH For wired networks
Router ROUTER For wired networks

WAN cloud WAN For wired networks. Used to purposely drop, delay, and reorder
passing packets.

Subnet SUBNET For wired networks. Used to insert a group of hosts that are all
connected to a central switch.

External Host EXTHOST This is for emulation purposes. Used to represent a host in the
real world.

External Router EXTROUTER This is for emulation purposes. Used to represent a router in the
real world.

External IEEE 802.11
(b) Mobile Node (ad
hoc mode)

EXTMNODE This is for emulation purposes. Used to represent an IEEE
802.11 (b) mobile node (ad hoc mode) in the real world.

External IEEE 802.11
(b) Mobile Node
(infrastructure mode)

EXTMNODE_INFRA This is for emulation purposes. Used to represent an IEEE
802.11 (b) mobile node (infrastructure mode) in the real world.

QoS DiffServ
Boundary Router BROUTER For wired network. Used as a boundary router in a QoS Diffserv

network.
QoS DiffServ Interior
Router IROUTER For wired network. Used as an interior router in a QoS Diffserv

network.
Optical Circuit Switch OSWITCH For optical network. Used as an optical circuit switch.
Optical Burst Switch OBSWITCH For optical network. Used as an optical burst switch.

GPRS Base Station GPRSBS For GPRS cellular network. Used as a base station in a GPRS
network.

GPRS Phone GPRSPHONE For GPRS cellular network. Used as a phone in a GPRS
network.

GPRS SGSN GPRSSGSN For GPRS cellular network. Used as a SGSN in a GPRS
network.

GPRS GGSN GPRSGGSN For GPRS cellular network. Used as a GGSN in a GPRS
network.

GPRS Pseudo Switch GPRSPS For GPRS cellular network. Used as a pseudo switch in a GPRS
network.

12 http://nsl10.csie.nctu.edu.tw/

Page 13 of 22

Wall (wireless signal
obstacle) WALL For wireless networks (to purposely block wireless signal

propagation)
IEEE 802.11 (b)
Mobile Node (ad hoc
mode)

MNODE For mobile wireless networks. Used as an IEEE 802.11 (b)
mobile node (ad hoc mode).

IEEE 802.11 (b)
Mobile Node
(infrastructure mode)

MNODE_INFRA For mobile wireless networks. Used as an IEEE 802.11 (b)
mobile node (infrastructure mode).

IEEE 802.11 (b)
Access Point AP For mobile wireless networks. Used as an IEEE 802.11 (b)

access point (infrastructure mode).
IEEE 802.11(b) dual-
radio wireless mesh
access point running
OSPF routing protocol

MESH_OSPF_AP
For mobile wireless mesh networks. Used as an IEEE 802.11 (b)
dual-radio mesh access point (infrastructure mode) running the
OSPF routing protocol.

IEEE 802.11(b) dual-
radio wireless mesh
access point running
SPT routing protocol

MESH_SPT_AP
For mobile wireless mesh networks. Used as an IEEE 802.11 (b)
dual-radio mesh access point (infrastructure mode) running the
spanning tree protocol.

IEEE 802.11 (e) QoS
Mobile Node
(infrastructure mode)

QoS_
MNODE_INFRA

For mobile wireless networks. Used as an IEEE 802.11 (e)
mobile node (infrastructure mode).

IEEE 802.11 (e) QoS
Access Point
(infrastructure mode)

QoS_AP For mobile wireless networks. Used as an IEEE 802.11 (e)
access point (infrastructure mode)

NCTUns supports the following network protocols:

Physical Layer
Protocol Acronym Technology Specification

Simple BER model for point-to-point link PHY For wired networks

Simple BER model for wireless signal (i.e., using the
transmission and interference ranges only) WPHY For wireless networks

More realistic (advanced) BER model for wireless
signal (i.e., considering the used modulation scheme,
received bit power, and noise level)

AWPHY For wireless networks

3dB beamwidth 60-degree and 120-degree steerable
directional antennas AWPHY For wireless networks

Data Link Layer
Protocol Acronym Technology Specification
Ethernet Ether IEEE 802.3
IEEE 802.11 (b) Wireless LAN (ad hoc
mode) WLANAD IEEE 802.11b

IEEE 802.11 (b) Wireless LAN
(infrastructure mode) WLANIN IEEE 802.11b

Learning Bridge Protocol (used in the switch) LBP IEEE 802.11d
Spanning Tree Protocol (used in the switch) STP IEEE 802.11d
Address Resolution Protocol ARP RFC-826

Page 14 of 22

2F-BLSR Optical Ring Protection Protocol 2F-BLSR 2F-BLSR
IEEE 802.11(b) wireless mesh network MAC MESH IEEE 802.11b (dual-radio access point)
IEEE 802.11(e) QoS wireless LAN MAC 802.11eWLAN 802.11e

Network Layer
Protocol Acronym Technology Specification

Internet Protocol IP RFC-791, RFC-792, RFC-826 (Both unicast and subnet
broadcast are supported.)

Internet Control Message Protocol ICMP RFC-792
Open Shortest Path First Routing
protocol OSPF RFC-1247

Routing Information Protocol RIP RFC-1058
Fixed-Network God Routing
Protocol FNGRP Automatically calculate the best routing paths for a fixed

network (for research comparison purposes)
Dynamic Source Routing protocol DSR For mobile ad hoc networks
Ad hoc On Demand Distance
Vector Routing protocol AODV For mobile ad hoc networks

Adaptive Distance Vector Routing
protocol ADV For mobile ad hoc networks

Destination-Sequenced Distance-
Vector Routing protocol DSDV For mobile ad hoc networks

Mobile-Network God Routing
Protocol MNGRP

Automatically calculate the best routing paths for a
mobile ad hoc network (for research comparison
purposes)

FIFO Packet Scheduling
mechanism FIFO (Can be used in a switch as well)

Deficit Round-Robin Packet
Scheduling DRR (Can be used in a switch as well)

Random Early Detection Buffer
Management RED (Can be used in a switch as well)

Packet dropping, delaying, and
reordering WAN

This module is used in the WAN node to purposely drop,
delay, and reorder passing packets according to a
specified statistic distribution.

QoS DiffServ EF, BE, CL, PHB DS_I
This module is used in an interior router in a QoS
DiffServ network to perform the specified per-hop-
behavior packet scheduling methods.

QoS DiffServ Traffic metering,
conditioning, and shaping DS_TC

This module is used in a boundary router in a QoS
DiffServ network to perform traffic metering,
conditioning, and shaping.

GPRS cellular network’s protocol
stacks GPRS Many modules are provided to construct the protocol

stacks used in the GPRS network.

Optical Burst Switching Protocol OBS Several modules are provided to construct the protocol
stacks used in the OBS network.

Mobile IP MIP
Several daemon programs are provided to implement the
home and foreign agents used in an Mobile IP network.
RFC-2002, RFC 2003.

IEEE 802.11(b) wireless mesh
network OSPF routing protocol MESHOSPF The OSPF routing protocol is run on the wireless mesh

network.
IEEE 802.11(b) wireless mesh
network SPT (Spanning Tree)
protocol

MESHSTP The spanning tree protocol is run on the wireless mesh
network.

Page 15 of 22

Transport Layer
Protocol Acronym Technology Specification
Transmission Control Protocol TCP RFC-791, RFC-792, RFC-826
User Datagram Protocol UDP RFC-768, RFC-1122
Real Time Transport Protocol, Real
Time Control Protocol RTP/RTCP RFC-1889, RFC-1890

Session Description Protocol SDP RFC-2327

Application Layer 13

Protocol or applications Acronym Technology Specification
HTTP
FTP
Telnet
Tcpdump

Traceroute

Ping

Stcp/rtcp Greedy TCP traffic

Ttcp Greedy TCP/UDP trafic

Stg/rtg
Greedy TCP/UDP traffic, trace driven,
self-similar traffic, on-off, constant-bit-
rate, and various packet streams.

Magent1~5 Tactical agent programs for tactical and
active mobile ad hoc network simulations

13 All existing real-world network application programs and tools can directly run on a simulated network. The above represent just
a few of them.

Page 16 of 22

5. DESMO-J
DESMO-J is an object-oriented framework targeted at programmers developing simulation
models. The acronym "DESMO-J" stands for "Discrete-Event Simulation and MOdelling
in Java". This longer name highlights DESMO-J's two significant properties:

• DESMO-J supports the discrete-event simulation paradigm. In models of this type,
all system state changes are supposed to happen at discrete points in time. Between
such events the system state is assumed to remain constant. Discrete-event
simulation is therefore particularly suitable for systems in which relevant changes
of state occur suddenly and irregularly, like queueing networks for example.

• DESMO-J is implemented in Java. Using this framework to build simulation
models ultimately results in writing a Java program.

Basic Features
The framework DESMO-J extends Java by adding features which greatly simplify the
construction of discrete-event simulation models. It provides the modeller with

• ready-to-use classes for common model components like queues, stochastic
distributions based on random number streams, and data collectors.

• abstract classes to be adapted to model-specific behaviour, like model, entity,
event, and simulation process. Depending on the modelling style applied you will
have to either define your own simulation processes or define your own entities and
events.

• ready-to-use simulation infrastructure comprising scheduler, event list, and
simulation time clock, all encapsulated in an experiment class. This experiment
class also provides for the generation of reports and traces of a simulation run.

DESMO-J supports the separation of model and experiment, a widely acknowledged
requirement of good simulation software as it allows for performing the same experiment
with different models which may represent competing system designs or alternative
strategies as well as performing different experiments with the same model. In DESMO-J
the model class handles all model components whereas the experiment class provides the
simulation infrastructure. Both are explicitly connected during a simulation run.14

Figure 5.1 Separation of Model and Experiment

DESMO-J is based on a number of earlier DESMO systems, all developed at the
University of Hamburg, Working Group Prof. Page, in the context of students' projects.
The original DESMO, written 1989 in the programming language Modula-2, was inspired
by DEMOS, a package for discrete-event simulation in Simula developed by Graham
Birtwistle in 1979. Since 1999, when the core DESMO-J framework was completed, it has
been extended in various aspects, e.g. to provide special components for the simulation of

14 http://asi-www.informatik.uni-hamburg.de/themen/sim/forschung/Simulation/Desmo-J/overview.html

Page 17 of 22

production systems or harbour logistics. DESMO-J is maintained by a team of developers
headed by Prof. Page.

6. deX

deX (Distributed Execution & Dynamic Experimentation Simulation Framework &
Modeling Language) aims to provide a fast, flexible, and easy-to-use platform for
developing, analyzing, and visualizing dynamic agent-based and multi-body simulations.
deX programs run efficiently on a single processor but more demanding programs are
easily adapted to run in parallel through high-level constructs utilizing shared
memory/multithreading, distributed TCP/IP communication, MPI, or any combination of
the three.
deX provides a versatile abstraction layer for managing parallelism, synchronization, and
event communication that facilitates continuous, discrete-event, and hybrid simulation and
allows complex programs to be constructed with a minimal amount of coding. deX is built
on top of a high-performance simulation engine designed to handle a large number of
entities with high levels of event communication. deX is an object oriented C++
framework which may be optionally used in combination with dML (deX Modeling
Language): a domain-specific language based on C++, built on top of the core deX
framework, and designed specifically for modeling, simulation, and rapid program
development. deX includes tools for batch execution, optimization, distributed job
execution, GUI controls, and real-time plotting/3D visualization using OpenGL.

Page 18 of 22

Simulation is a thoroughly established field and there are hundreds of existing high-quality
simulation-related software tools, so what does deX have to offer? A small subset of the
available simulation tools are complete simulation frameworks or simulation languages. A
smaller portion in turn are freely downloadable and available for Linux. UNIX is a
powerful platform in scientific computing, offering, among other things, the best of both
worlds in GUI and command-line flexibility. Linux is a highly accessible and widely
supported UNIX platform with a large base of high-quality, free, and open-source software
and libraries, many of which are installed as standard on a modern Linux distribution.

deX avoids re-inventing the wheel and seeks to leverage the power of existing Linux
libraries and programs whenever possible. Many simulation packages are cross-platform
with ports to Linux often as an afterthought. deX was designed specifically for Linux and
deX programs use powerful UNIX facilities such as commands, options, input/output
redirection, and piping. deX follows the UNIX philosophy of small specialized programs
that can be combined in useful ways. Some simulation packages provide an integrated
environment using an elaborate GUI and editor for simulation development. deX prefers
the use of a familiar editor such as emacs and a strong text-based foundation that does not
rule out the possibility of creating a GUI on top of this foundation later. Design goals such
as these make Linux an essential asset.
Many simulation frameworks use Java. Java as a language, with its extensive class libraries
and built-in threading is an attractive platform for simulation. However, because of its
interpreted nature, it is not a good choice in the performance-intensive and real-time
visualization types of programs targeted by deX. Further, Java lacks a 3D library that is on
par with OpenGL.
Many simulation packages do not include a simulation language. When they do, the
language often differs greatly from familiar languages and the user must code in this
custom

Page 19 of 22

language in order to make use of the simulation package. Unfamiliar languages take time
to learn, make maintenance difficult, and often do not interface with established
generalpurpose languages. Simulation languages are often interpreted which can lead to
poor performance when compared to a compiled binary. dML uses a familiar grammar
based on C++ and is built on top of a simulation framework and translated to C++,
allowing integration with existing C++ code and libraries. deX programs are compiled to
binary using shared libraries for high performance. The framework and dML together
allow the development of complex simulations with a minimal amount of coding.
Given these combined considerations, deX fills a unique niche in the available simulation
software; deX:
• may be downloaded and used without restriction for free
• is designed specifically for Linux taking advantage of UNIX features
• leverages the power of existing Linux libraries and programs
• is easy-to-use with minimal coding
• offers hybrid simulation features
• supports real-time 3D visualization using OpenGL
• is based on a C++ foundation for integration and high performance
• provides an optional simulation language based on a familiar C++ grammar and built on
top of a simulation framework.
deX is a versatile framework that supports continuous, discrete-event, and hybrid
simulation and was designed especially for multi-body, agent-based, and general systems
modeling.
• deX is built on top of a high-performance simulation engine designed to support a large
number of entities with high levels of event communication. This is vital in nbody
simulations when at each cycle each body must communicate with every other body. In
this common scenario, event communication is O(n2) and quickly becomes the bottleneck.
• deX provides high-level constructs that ease the difficulties of creating parallel and
distributed programs and make use of shared memory/multi-threading, TCP/IP, MPI, or
any combination of the three.
• dML is designed specifically for modeling and offers many features that facilitate rapid-
prototyping. The grammar is based on C++ making it easy to learn for anyone familiar
with C++, Java, or popular procedural programming languages.
• dML code is translated to C++. In addition to the benefits of efficiency in execution, this
approach allows for existing C/C++ code and libraries to be easily integrated with dML
code. Conversely, code translated from dML to C++ may be integrated into existing
general-purpose C++ projects. Using dML is optional. The core framework and utility
classes may be used as a C++ framework.
• The console entity is an example of integrating dML code with existing C++ libraries.
The console entity makes use of OpenGL and SDL to provide a simplified interface to
real-time 3D visualization facilities.
• The controls entity is another example of an entity written in C++. The controls entity
interfaces seamlessly with dML providing an easy-to-use interface to the GTK library
allowing the user to construct a GUI with buttons and sliders which emit events that may
be received by other entities.
• deX includes an extensive library of continuous and discrete probability distributions that
are useful in stochastic modeling.
• The dexplot command leverages the power of gnuplot allowing data to be filtered
through regular expressions to provide real-time plotting.
• The dexc command allows for complex and frequently used commands to be associated
with a project. dexc uses a configuration file that is similar to a Makefile.

Page 20 of 22

• The dexbatch command coordinates batch executions and optimization. Dexbatch allows
the user to run a series of executions on a linear combination of input parameters and
varying in an interval. Each execution may be repeated a number of times with a unique
random seed and the results averaged.
• deX provides a run-time error handling mechanism that greatly speeds development time
and reduces the need to use a debugger.
• deX is freely available for x86-linux and x86 64-linux from http://dex.infini-x.org15

7. Conclusions and future work
Based on a bibliographic point of view it is quite difficult to discern among the plenty
simulators the “best”, the “more complete” or the “most suitable” one. The field of
network research or investigation and assessment is very wide and many issues remain
unexplored given the situation of constant progress. Thus one can only sort the different
simulators based on criteria like the ones on above pages 4, 5.
NS2 is the most well known and established simulator in students and researchers. It seems
to deliver quite well what it claims it does on network simulation but also with the usual
problems of debugging.
NCTUns is a very fresh simulator (first released on 11/2002) and has a very good
presentation and documentation of its features. It is promoted as innovative and achieving
things that NS2 and OPNET can not while referring to them as “traditional simulators”.
His innovative feature is the kernel re-entering methodology for creating the entities of the
simulation giving them in this way a rich set of attributes otherwise not available.
Imunes uses a similar methodology of reusing the OS kernel code in each virtual node as
NCTUns does.
DESMO-J and deX are both object oriented frameworks with a broad range of simulation
applications not only restricted on networks.
In later papers and after an efficient number of network simulators had been presented
maybe it would be more useful for a more thoroughly examination of the most interesting
of them.

15 deX: Distributed Execution & Dynamic Experimentation Simulation Framework & Modeling Language, User’s
Manual Version 1.5.0, Copyright c 2003-2006 infini-x.org, pages 8-9.

Page 21 of 22

8. References

1. http://en.wikipedia.org/wiki/Network_simulation

Definition of Network Simulation in wikipedia site, containing useful links on the subject

2. http://www.emulab.net/index.php3?stayhome=1
Official web site of emulab, the distributed network testbed of University of UTAH.

3. http://www.tel.fer.hr/imunes/
Official web site of imunes simulator framework

4. http://www.topology.org/soft/sim.html#DESS
A web site with a very large list of simulators of all kinds.

5. http://www.isi.edu/nsnam/ns/
Presentation and resources of NS-2

6. http://www.isi.edu/nsnam/vint/

Presentation of the project VINT and correlated links

7. The ns Manual, September 2005

8. http://asi-www.informatik.uni-hamburg.de/themen/sim/forschung/Simulation/Desmo-
J/index.html
Presentation web pages and resources of the DESMO-J simulator

9. “An introduction to management science” by D.R.Anderson, D.J.Sweeney, T.A.Williams,

THOMSON SOUTH – WESTERN ed.11th.

10. Free tools for network simulation, paper by Voultiou Efthimia of MIS University Of
Macedonia, 2006

11. http://www.linuxjournal.com/article/5929

Article in Linux Journal site about use of NS-2 to a specific project.

12. http://nsl10.csie.nctu.edu.tw/
Web Site of SIMREAL the virtual company that promotes NCTUns simulator

13. http://nsl.csie.nctu.edu.tw/nctuns.html

Web Site of the NCTUns simulator/emulator

14. deX: Distributed Execution & Dynamic Experimentation Simulation Framework &
Modeling Language, User’s Manual Version 1.5.0, Copyright c 2003-2006 infini-x.org

15. http://dextk.org/dex/index.html

Web Site of the deX framework.

16. Epixeirisiaki diadiktyosi by G. Diakonikolaou, A. Ajiakatsika and H. Mpouras.
Kleidarithmos 2004

17. http://www.lionhrtpub.com/orms/surveys/Simulation/Simulation.html

Web page of Lionheart Publishing (USA) presenting its annual survey (2006) of
commercial simulation softwares

Page 22 of 22

http://en.wikipedia.org/wiki/Network_simulation
http://www.emulab.net/index.php3?stayhome=1
http://www.tel.fer.hr/imunes/
http://www.topology.org/soft/sim.html#DESS
http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/vint/
http://asi-www.informatik.uni-hamburg.de/themen/sim/forschung/Simulation/Desmo-J/index.html
http://asi-www.informatik.uni-hamburg.de/themen/sim/forschung/Simulation/Desmo-J/index.html
http://www.linuxjournal.com/article/5929
http://nsl10.csie.nctu.edu.tw/
http://nsl.csie.nctu.edu.tw/nctuns.html
http://dextk.org/dex/index.html
http://www.lionhrtpub.com/orms/surveys/Simulation/Simulation.html

